File size: 9,930 Bytes
10ca0d7 1f2bc46 10ca0d7 9ddd1d9 10ca0d7 3c7506a c16edd1 10ca0d7 d7df686 10ca0d7 6de370a 10ca0d7 115aae6 10ca0d7 d7df686 6de370a 642e023 6de370a 642e023 56f7d8d 642e023 a9c07a3 10ca0d7 f31392b 10ca0d7 9ab80de 10ca0d7 1f2bc46 10ca0d7 f31392b 10ca0d7 2347584 10ca0d7 6de370a 10ca0d7 f31392b 10ca0d7 f31392b 10ca0d7 f31392b 2347584 10ca0d7 2347584 10ca0d7 1f2bc46 10ca0d7 f31392b 9ab80de f31392b 9ab80de f31392b 6de370a 10ca0d7 6de370a 10ca0d7 6de370a 10ca0d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
license: llama3
language:
- en
pipeline_tag: text-generation
tags:
- nvidia
- chatqa-1.5
- chatqa
- llama-3
- pytorch
---
## Model Details
We introduce Llama3-ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augmented generation (RAG). Llama3-ChatQA-1.5 is developed using an improved training recipe from [ChatQA (1.0)](https://arxiv.org/abs/2401.10225), and it is built on top of [Llama-3 base model](https://huggingface.co/meta-llama/Meta-Llama-3-8B). Specifically, we incorporate more conversational QA data to enhance its tabular and arithmetic calculation capability. Llama3-ChatQA-1.5 has two variants: Llama3-ChatQA-1.5-8B and Llama3-ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format.
## Other Resources
[Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Paper](https://arxiv.org/abs/2401.10225)
## Benchmark Results
Results in [ChatRAG Bench](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) are as follows:
| | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
| -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
| QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
| QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
| CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 78.57 | 76.46 | 78.44 |
| DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 51.94 | 49.6 | 50.67 |
| ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 73.69 | 78.46 | 81.88 |
| SQA | 61.87 | 74.07 | 69.61 | 79.21 | 69.14 | 73.28 | 83.82 |
| TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 50.98 | 49.96 | 55.63 |
| HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 56.44 | 65.76 | 68.27 |
| INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 31.9 | 30.1 | 32.31 |
| Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
| Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ChatRAG Bench can be found [here](https://huggingface.co/datasets/nvidia/ChatRAG-Bench).
## Prompt Format
**We highly recommend that you use the prompt format we provide, as follows:**
### when context is available
<pre>
System: {System}
{Context}
User: {Question}
Assistant: {Response}
User: {Question}
Assistant:
</pre>
### when context is not available
<pre>
System: {System}
User: {Question}
Assistant: {Response}
User: {Question}
Assistant:
</pre>
**The content of the system's turn (i.e., {System}) for both scenarios is as follows:**
<pre>
This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context.
</pre>
**Note that our ChatQA-1.5 models are optimized for the capability with context, e.g., over documents or retrieved context.**
## How to use
### take the whole document as context
This can be applied to the scenario where the whole document can be fitted into the model, so that there is no need to run retrieval over the document.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "nvidia/Llama3-ChatQA-1.5-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
messages = [
{"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
]
document = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
def get_formatted_input(messages, context):
system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
instruction = "Please give a full and complete answer for the question."
for item in messages:
if item['role'] == "user":
## only apply this instruction for the first user turn
item['content'] = instruction + " " + item['content']
break
conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:"
formatted_input = system + "\n\n" + context + "\n\n" + conversation
return formatted_input
formatted_input = get_formatted_input(messages, document)
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### run retrieval to get top-n chunks as context
This can be applied to the scenario when the document is very long, so that it is necessary to run retrieval. Here, we use our [Dragon-multiturn](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) retriever which can handle conversatinoal query. In addition, we provide a few [documents](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B/tree/main/docs) for users to play with.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch
import json
## load ChatQA-1.5 tokenizer and model
model_id = "nvidia/Llama3-ChatQA-1.5-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
## load retriever tokenizer and model
retriever_tokenizer = AutoTokenizer.from_pretrained('nvidia/dragon-multiturn-query-encoder')
query_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-query-encoder')
context_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-context-encoder')
## prepare documents, we take landrover car manual document that we provide as an example
chunk_list = json.load(open("docs.json"))['landrover']
messages = [
{"role": "user", "content": "how to connect the bluetooth in the car?"}
]
### running retrieval
## convert query into a format as follows:
## user: {user}\nagent: {agent}\nuser: {user}
formatted_query_for_retriever = '\n'.join([turn['role'] + ": " + turn['content'] for turn in messages]).strip()
query_input = retriever_tokenizer(formatted_query_for_retriever, return_tensors='pt')
ctx_input = retriever_tokenizer(chunk_list, padding=True, truncation=True, max_length=512, return_tensors='pt')
query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
## Compute similarity scores using dot product and rank the similarity
similarities = query_emb.matmul(ctx_emb.transpose(0, 1)) # (1, num_ctx)
ranked_results = torch.argsort(similarities, dim=-1, descending=True) # (1, num_ctx)
## get top-n chunks (n=5)
retrieved_chunks = [chunk_list[idx] for idx in ranked_results.tolist()[0][:5]]
context = "\n\n".join(retrieved_chunks)
### running text generation
formatted_input = get_formatted_input(messages, context)
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Correspondence to
Zihan Liu ([email protected]), Wei Ping ([email protected])
## Citation
<pre>
@article{liu2024chatqa,
title={ChatQA: Building GPT-4 Level Conversational QA Models},
author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
journal={arXiv preprint arXiv:2401.10225},
year={2024}}
</pre>
## License
The use of this model is governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
|