omarelshehy's picture
Update README.md
f0ebb68 verified
|
raw
history blame
6.2 kB
---
base_model: FacebookAI/xlm-roberta-large
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8256350418804052
name: Pearson Cosine
- type: spearman_cosine
value: 0.827478494281667
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8228224900306127
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8284011632112219
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8231973876582674
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8288613978074281
name: Spearman Euclidean
- type: pearson_dot
value: 0.8016573454999604
name: Pearson Dot
- type: spearman_dot
value: 0.8004396683364462
name: Spearman Dot
- type: pearson_max
value: 0.8256350418804052
name: Pearson Max
- type: spearman_max
value: 0.8288613978074281
name: Spearman Max
license: apache-2.0
language:
- ar
---
# SentenceTransformer based on FacebookAI/xlm-roberta-large
This is an **Arabic only** [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
The model is trained using the MatryoshkaLoss for embeddings of size 1024, 786, 512, 128, and 64 for storage optimization (See [Evaluation](#Evaluation)).
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
matryoshka_dim = 786
model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka", truncate_dim=matryoshka_dim)
# Run inference
sentences = [
'أحب قراءة الكتب في أوقات فراغي.',
'أستمتع بقراءة القصص في المساء قبل النوم.',
'القراءة تعزز معرفتي وتفتح أمامي آفاق جديدة.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8256 |
| **spearman_cosine** | **0.8275** |
| pearson_manhattan | 0.8228 |
| spearman_manhattan | 0.8284 |
| pearson_euclidean | 0.8232 |
| spearman_euclidean | 0.8289 |
| pearson_dot | 0.8017 |
| spearman_dot | 0.8004 |
| pearson_max | 0.8256 |
| spearman_max | 0.8289 |
#### Embedding Size and Performance
This plot shows the slight degradation of performance qith smaller embedding sizes (worth investigating for your case since the benefits are huge compared to the slight loss in performance)
![Plot](https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka/resolve/main/performance_vs_embeddingsize.png)
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->