omthkkr's picture
End of training
d9b1c95
|
raw
history blame
2.88 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6547
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1837 1.0 113 2.0719 0.39
1.5697 2.0 226 1.5216 0.56
1.2341 3.0 339 1.0787 0.7
1.0559 4.0 452 0.9199 0.75
0.7576 5.0 565 0.8469 0.75
0.5683 6.0 678 0.7064 0.76
0.4652 7.0 791 0.5912 0.79
0.1398 8.0 904 0.5407 0.81
0.2012 9.0 1017 0.4836 0.87
0.0445 10.0 1130 0.4839 0.88
0.0145 11.0 1243 0.5439 0.88
0.0519 12.0 1356 0.6309 0.85
0.0068 13.0 1469 0.5626 0.88
0.0054 14.0 1582 0.5949 0.88
0.0054 15.0 1695 0.5889 0.88
0.0033 16.0 1808 0.6233 0.89
0.1396 17.0 1921 0.6340 0.88
0.0029 18.0 2034 0.6362 0.88
0.0026 19.0 2147 0.6441 0.88
0.0027 20.0 2260 0.6547 0.87

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3