onizukal's picture
End of training
38f5d2e verified
|
raw
history blame
3.16 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6552845528455284

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1034
  • Accuracy: 0.6553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1966 1.0 923 1.1276 0.5995
1.0326 2.0 1846 1.0374 0.6360
0.6666 3.0 2769 1.0904 0.6415
0.4288 4.0 3692 1.2437 0.6474
0.2209 5.0 4615 1.4346 0.6404
0.1143 6.0 5538 1.6952 0.6442
0.1733 7.0 6461 1.9268 0.6547
0.0409 8.0 7384 2.2016 0.6518
0.0999 9.0 8307 2.4623 0.6485
0.0104 10.0 9230 2.6094 0.6534
0.0424 11.0 10153 2.7340 0.6558
0.0463 12.0 11076 2.8098 0.6599
0.0005 13.0 11999 2.9333 0.6553
0.0144 14.0 12922 2.9705 0.6531
0.0002 15.0 13845 3.0020 0.6566
0.0157 16.0 14768 3.0642 0.6588
0.0005 17.0 15691 3.0529 0.6575
0.0029 18.0 16614 3.0952 0.6558
0.0024 19.0 17537 3.0982 0.6572
0.0001 20.0 18460 3.1034 0.6553

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1