AI & ML interests

Small LMs for small computers

Recent Activity

M4-ai's activity

prithivMLmods 
posted an update 1 day ago
view post
Post
367
Hey Guys! One Small Announcement 🤗
Stranger Zone now accepts LoRA requests!

✍️Request : strangerzonehf/Request-LoRA [ or ] strangerzonehf/Request-LoRA#1

Page : https://huggingface.co/strangerzonehf

Describe the artistic properties by posting sample images or links to similar images in the request discussion. If the adapters you're asking for are truly creative and safe for work, I'll train and upload the LoRA to the Stranger Zone repo!

Thank you!
AtAndDev 
posted an update 3 days ago
view post
Post
1418
Gemma 3 seems to be really good at human preference. Just waiting for ppl to see it.
prithivMLmods 
posted an update 3 days ago
not-lain 
posted an update 3 days ago
prithivMLmods 
posted an update 4 days ago
Tonic 
posted an update 9 days ago
view post
Post
1036
🙋🏻‍♂️Hey there folks,

Did you know that you can use ModernBERT to detect model hallucinations ?

Check out the Demo : Tonic/hallucination-test

See here for Medical Context Demo : MultiTransformer/tonic-discharge-guard

check out the model from KRLabs : KRLabsOrg/lettucedect-large-modernbert-en-v1

and the library they kindly open sourced for it : https://github.com/KRLabsOrg/LettuceDetect

👆🏻if you like this topic please contribute code upstream 🚀

  • 2 replies
·
Tonic 
posted an update 10 days ago
view post
Post
654
Powered by KRLabsOrg/lettucedect-large-modernbert-en-v1 from KRLabsOrg.

Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!

### Model Details
- **Model Name**: [lettucedect-large-modernbert-en-v1]( KRLabsOrg/lettucedect-large-modernbert-en-v1)
- **Organization**: [KRLabsOrg](https://huggingface.co/KRLabsOrg)
- **Github**: [https://github.com/KRLabsOrg/LettuceDetect](https://github.com/KRLabsOrg/LettuceDetect)
- **Architecture**: ModernBERT (Large) with extended context support up to 8192 tokens
- **Task**: Token Classification / Hallucination Detection
- **Training Dataset**: [RagTruth]( wandb/RAGTruth-processed)
- **Language**: English
- **Capabilities**: Detects hallucinated spans in answers, provides confidence scores, and calculates average confidence across detected spans.

LettuceDetect excels at processing long documents to determine if an answer aligns with the provided context, making it a powerful tool for ensuring factual accuracy.
prithivMLmods 
posted an update 10 days ago
Locutusque 
posted an update 18 days ago
view post
Post
2517
🎉 Exciting news, everyone! I've just released **Thespis-Llama-3.1-8B**, a new language model designed for enhanced roleplaying! ✨️

It's built on Llama-3.1 and fine-tuned with a focus on Theory of Mind reasoning to create more believable and engaging characters. It even learned a few tricks on its own, like adding in-character thought processes! 🧠

Check it out here: Locutusque/Thespis-Llama-3.1-8B

Give it a try and let me know what you think! I'm especially interested in feedback on how well the characters stay in role and if the responses feel natural. Looking forward to seeing what amazing stories you create! ✍️
prithivMLmods 
posted an update 18 days ago
view post
Post
5854
Dropping some of the custom fine-tunes based on SigLIP2,
with a single/multi label classification problem type! 🌀🧤

- AI vs Deepfake vs Real : prithivMLmods/AI-vs-Deepfake-vs-Real-Siglip2
- Deepfake Detect : prithivMLmods/Deepfake-Detect-Siglip2
- Fire Detection : prithivMLmods/Fire-Detection-Siglip2
- Deepfake Quality Assess : prithivMLmods/Deepfake-Quality-Assess-Siglip2
- Guard Against Unsafe Content : prithivMLmods/Guard-Against-Unsafe-Content-Siglip2

🌠Collection : prithivMLmods/siglip2-custom-67bcdb2de8fe96b99fb4e19e
KnutJaegersberg 
posted an update 21 days ago
prithivMLmods 
posted an update 21 days ago
view post
Post
5828
It's really interesting about the deployment of a new state of matter in Majorana 1: the world’s first quantum processor powered by topological qubits. If you missed this news this week, here are some links for you:

🅱️Topological qubit arrays: https://arxiv.org/pdf/2502.12252

⚛️ Quantum Blog: https://azure.microsoft.com/en-us/blog/quantum/2025/02/19/microsoft-unveils-majorana-1-the-worlds-first-quantum-processor-powered-by-topological-qubits/

📖 Read the story: https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/

📝 Majorana 1 Intro: https://youtu.be/Q4xCR20Dh1E?si=Z51DbEYnZFp_88Xp

🌀The Path to a Million Qubits: https://youtu.be/wSHmygPQukQ?si=TS80EhI62oWiMSHK
·
mmhamdy 
posted an update 22 days ago
view post
Post
2735
🎉 We're excited to introduce MemoryCode, a novel synthetic dataset designed to rigorously evaluate LLMs' ability to track and execute coding instructions across multiple sessions. MemoryCode simulates realistic workplace scenarios where a mentee (the LLM) receives coding instructions from a mentor amidst a stream of both relevant and irrelevant information.

💡 But what makes MemoryCode unique?! The combination of the following:

✅ Multi-Session Dialogue Histories: MemoryCode consists of chronological sequences of dialogues between a mentor and a mentee, mirroring real-world interactions between coworkers.

✅ Interspersed Irrelevant Information: Critical instructions are deliberately interspersed with unrelated content, replicating the information overload common in office environments.

✅ Instruction Updates: Coding rules and conventions can be updated multiple times throughout the dialogue history, requiring LLMs to track and apply the most recent information.

✅ Prospective Memory: Unlike previous datasets that cue information retrieval, MemoryCode requires LLMs to spontaneously recall and apply relevant instructions without explicit prompts.

✅ Practical Task Execution: LLMs are evaluated on their ability to use the retrieved information to perform practical coding tasks, bridging the gap between information recall and real-world application.

📌 Our Findings

1️⃣ While even small models can handle isolated coding instructions, the performance of top-tier models like GPT-4o dramatically deteriorates when instructions are spread across multiple sessions.

2️⃣ This performance drop isn't simply due to the length of the context. Our analysis indicates that LLMs struggle to reason compositionally over sequences of instructions and updates. They have difficulty keeping track of which instructions are current and how to apply them.

🔗 Paper: From Tools to Teammates: Evaluating LLMs in Multi-Session Coding Interactions (2502.13791)
📦 Code: https://github.com/for-ai/MemoryCode
KnutJaegersberg 
posted an update 24 days ago
view post
Post
709
Mimicking Consciousness in LLMs: Ascending the Dimensions of Thought with Recurrent Processing

This blog post explores how **recurrent processing** can transform Large Language Models (LLMs) to mimic aspects of human thought by engaging in iterative feedback loops. Inspired by string theory, the post describes how LLMs can "ascend dimensions" of cognition, progressing through foundational cognitive loops—such as basic cognition, executive functions, and meta-cognition—before advancing into **world simulation**. In this stage, LLMs explore higher dimensions, perceiving non-linear time, simulating branching possibilities, and integrating multiple realities. The interaction between the **Generator** and **Reflective Compass** allows AI systems to refine their outputs iteratively, moving toward a **point attractor** where ideas become coherent and polished. While this process doesn't bestow true consciousness, it offers a compelling imitation of reflective and adaptive thinking, leading to smarter dialogue, enhanced creativity, and more robust problem-solving.

https://huggingface.co/blog/KnutJaegersberg/oscillatory-recurrence-for-llms
prithivMLmods 
posted an update 25 days ago
view post
Post
3922
Dino: The Minimalist Multipurpose Chat System 🌠
Agent-Dino : prithivMLmods/Agent-Dino
Github: https://github.com/PRITHIVSAKTHIUR/Agent-Dino

By default, it performs the following tasks:
{Text-to-Text Generation}, {Image-Text-Text Generation}
@image: Generates an image using Stable Diffusion xL.
@3d: Generates a 3D mesh.
@web: Web search agents.
@rAgent: Initiates a reasoning chain using Llama mode for coding explanations.
@tts1-♀, @tts2-♂: Voice generation (Female and Male voices).
@yolo : Object Detection
prithivMLmods 
posted an update 27 days ago
view post
Post
4493
The last week of Impression Craft Arts and sketches from strangerzonehf🎨🧑🏻‍🎨

- Collection : strangerzonehf/Flux-Ultimate-LoRA-Collection

Adapters:
+ Ld-Art : strangerzonehf/Ld-Art
+ Animeopix-Flux : strangerzonehf/Animeopix-Flux
+ Flux-Super-Paint-LoRA : strangerzonehf/Flux-Super-Paint-LoRA
+ CinematicShot-Pics-Flux : strangerzonehf/cinematicShot-Pics-Flux
+ Oil-Wall-Art-Flux : strangerzonehf/Oil-Wall-Art-Flux
+ Pixelo-Flux : strangerzonehf/Pixelo-Flux
+ Abstract-Shattered : strangerzonehf/Abstract-Shattered
+ Neon-Impressionism-Flux : strangerzonehf/Neon-Impressionism-Flux
+ NewG-Art : strangerzonehf/NewG-Art

🪧Demo : prithivMLmods/FLUX-LoRA-DLC
🤗Page : https://huggingface.co/strangerzonehf
AtAndDev 
posted an update 28 days ago
mmhamdy 
posted an update about 1 month ago
view post
Post
2969
⛓ Evaluating Long Context #2: SCROLLS and ZeroSCROLLS

In this series of posts about tracing the history of long context evaluation, we started with Long Range Arena (LRA). Introduced in 2020, Long Range Arens (LRA) is one of the earliest benchmarks designed to tackle the challenge of long context evaluation. But it wasn't introduced to evaluate LLMs, but rather the transformer architecture in general.

📜 The SCROLLS benchmark, introduced in 2022, addresses this gap in NLP/LLM research. SCROLLS challenges models with tasks that require reasoning over extended sequences (according to 2022 standards). So, what does it offer?

1️⃣ Long Text Focus: SCROLLS (unlike LRA) focus mainly on text and contain inputs with thousands of words, testing models' ability to synthesize information across lengthy documents.
2️⃣ Diverse Tasks: Includes summarization, question answering, and natural language inference across domains like literature, science, and business.
3️⃣ Unified Format: All datasets are available in a text-to-text format, facilitating easy evaluation and comparison of models.

Building on SCROLLS, ZeroSCROLLS takes long text evaluation to the next level by focusing on zero-shot learning. Other features include:

1️⃣ New Tasks: Introduces tasks like sentiment aggregation and sorting book chapter summaries.
2️⃣ Leaderboard: A live leaderboard encourages continuous improvement and competition among researchers.

💡 What are some other landmark benchmarks in the history of long context evaluation? Feel free to share your thoughts and suggestions in the comments.

- SCROLLS Paper: SCROLLS: Standardized CompaRison Over Long Language Sequences (2201.03533)
- ZeroSCROLLS Paper: ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding (2305.14196)