smart-turn-v2 / README.md
marcus-daily
Model card fixes
849c530
---
pipeline_tag: voice-activity-detection
license: bsd-2-clause
tags:
- speech-processing
- semantic-vad
- multilingual
datasets:
- pipecat-ai/chirp3_1
- pipecat-ai/orpheus_midfiller_1
- pipecat-ai/orpheus_grammar_1
- pipecat-ai/orpheus_endfiller_1
- pipecat-ai/human_convcollector_1
- pipecat-ai/rime_2
- pipecat-ai/human_5_all
languages:
- en
- fr
- de
- es
- pt
- zh
- ja
- hi
- it
- ko
- nl
- pl
- ru
- tr
---
# Smart Turn v2
**Smart Turn v2** is an open‑source semantic Voice Activity Detection (VAD) model that tells you **_whether a speaker has finished their turn_** by analysing the raw waveform, not the transcript.
Compared with v1 it is:
* **Multilingual** – 14 languages (EN, FR, DE, ES, PT, ZH, JA, HI, IT, KO, NL, PL, RU, TR).
* **6 × smaller** – ≈ 360 MB vs. 2.3 GB.
* **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S.
## Links
* [Blog post: Smart Turn v2](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
* [GitHub repo](https://github.com/pipecat-ai/smart-turn) with training and inference code
## Intended use & task
| Use‑case | Why this model helps |
|---------------------------------------------|-------------------------------------------------------------------------|
| Voice agents / chatbots | Wait to reply until the user has **actually** finished speaking. |
| Real‑time transcription + TTS | Avoid “double‑talk” by triggering TTS only when the user turn ends. |
| Call‑centre assist & analytics | Accurate segmentation for diarisation and sentiment pipelines. |
| Any project needing semantic VAD | Detects incomplete thoughts, filler words (“um …”, “えーと …”) and intonation cues ignored by classic energy‑based VAD. |
The model outputs a single probability; values ≥ 0.5 indicate the speaker has completed their utterance.
## Model architecture
* Backbone : `wav2vec2` encoder
* Head     : shallow linear classifier
* Params   : 94.8 M (float32)
* Checkpoint: 360 MB Safetensors (compressed)
The `wav2vec2 + linear` configuration out‑performed LSTM and deeper transformer variants during ablation studies.
## Training data
| Source | Type | Languages |
|-------------------------|-------------------------------|-----------|
| `human_5_all` | Human‑recorded | EN |
| `human_convcollector_1` | Human‑recorded | EN |
| `rime_2` | Synthetic (Rime) | EN |
| `orpheus_midfiller_1` | Synthetic (Orpheus) | EN |
| `orpheus_grammar_1` | Synthetic (Orpheus) | EN |
| `orpheus_endfiller_1` | Synthetic (Orpheus) | EN |
| `chirp3_1` | Synthetic (Google Chirp3 TTS) | 14 langs |
* Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text.
* Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech.
All audio/text pairs are released on the [pipecat‑ai/datasets](https://huggingface.co/pipecat-ai/datasets) hub.
## Evaluation & performance
### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete)
| Lang | Acc % | Lang | Acc % |
|------|-------|------|-------|
| EN | 94.3 | IT | 94.4 |
| FR | 95.5 | KO | 95.5 |
| ES | 92.1 | PT | 95.5 |
| DE | 95.8 | TR | 96.8 |
| NL | 96.7 | PL | 94.6 |
| RU | 93.0 | HI | 91.2 |
| ZH | 87.2 | – | – |
*Human English benchmark (`human_5_all`) : **99 %** accuracy.*
### Inference latency for 8 s audio
| Device | Time |
|-------------------------------|------|
| NVIDIA L40S | 12 ms |
| NVIDIA A100 | 19 ms |
| NVIDIA T4 (AWS g4dn.xlarge) | 75 ms |
| 16‑core x86\_64 CPU (Modal) | 410 ms |
[oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/)
## How to use – quick start
```python
from transformers import pipeline
import soundfile as sf
pipe = pipeline(
"audio-classification",
model="pipecat-ai/smart-turn-v2",
feature_extractor="facebook/wav2vec2-base"
)
speech, sr = sf.read("user_utterance.wav")
if sr != 16_000:
raise ValueError("Resample to 16 kHz")
result = pipe(speech, top_k=None)[0]
print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}")
# label == 'complete' → user has finished speaking
```