|
--- |
|
pipeline_tag: voice-activity-detection |
|
license: bsd-2-clause |
|
tags: |
|
- speech-processing |
|
- semantic-vad |
|
- multilingual |
|
datasets: |
|
- pipecat-ai/chirp3_1 |
|
- pipecat-ai/orpheus_midfiller_1 |
|
- pipecat-ai/orpheus_grammar_1 |
|
- pipecat-ai/orpheus_endfiller_1 |
|
- pipecat-ai/human_convcollector_1 |
|
- pipecat-ai/rime_2 |
|
- pipecat-ai/human_5_all |
|
languages: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- pt |
|
- zh |
|
- ja |
|
- hi |
|
- it |
|
- ko |
|
- nl |
|
- pl |
|
- ru |
|
- tr |
|
--- |
|
|
|
# Smart Turn v2 |
|
|
|
**Smart Turn v2** is an open‑source semantic Voice Activity Detection (VAD) model that tells you **_whether a speaker has finished their turn_** by analysing the raw waveform, not the transcript. |
|
Compared with v1 it is: |
|
|
|
* **Multilingual** – 14 languages (EN, FR, DE, ES, PT, ZH, JA, HI, IT, KO, NL, PL, RU, TR). |
|
* **6 × smaller** – ≈ 360 MB vs. 2.3 GB. |
|
* **3 × faster** – ≈ 12 ms to analyse 8 s of audio on an NVIDIA L40S. |
|
|
|
## Links |
|
|
|
* [Blog post: Smart Turn v2](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/) |
|
* [GitHub repo](https://github.com/pipecat-ai/smart-turn) with training and inference code |
|
|
|
|
|
## Intended use & task |
|
|
|
| Use‑case | Why this model helps | |
|
|---------------------------------------------|-------------------------------------------------------------------------| |
|
| Voice agents / chatbots | Wait to reply until the user has **actually** finished speaking. | |
|
| Real‑time transcription + TTS | Avoid “double‑talk” by triggering TTS only when the user turn ends. | |
|
| Call‑centre assist & analytics | Accurate segmentation for diarisation and sentiment pipelines. | |
|
| Any project needing semantic VAD | Detects incomplete thoughts, filler words (“um …”, “えーと …”) and intonation cues ignored by classic energy‑based VAD. | |
|
|
|
The model outputs a single probability; values ≥ 0.5 indicate the speaker has completed their utterance. |
|
|
|
## Model architecture |
|
|
|
* Backbone : `wav2vec2` encoder |
|
* Head : shallow linear classifier |
|
* Params : 94.8 M (float32) |
|
* Checkpoint: 360 MB Safetensors (compressed) |
|
The `wav2vec2 + linear` configuration out‑performed LSTM and deeper transformer variants during ablation studies. |
|
|
|
## Training data |
|
|
|
| Source | Type | Languages | |
|
|-------------------------|-------------------------------|-----------| |
|
| `human_5_all` | Human‑recorded | EN | |
|
| `human_convcollector_1` | Human‑recorded | EN | |
|
| `rime_2` | Synthetic (Rime) | EN | |
|
| `orpheus_midfiller_1` | Synthetic (Orpheus) | EN | |
|
| `orpheus_grammar_1` | Synthetic (Orpheus) | EN | |
|
| `orpheus_endfiller_1` | Synthetic (Orpheus) | EN | |
|
| `chirp3_1` | Synthetic (Google Chirp3 TTS) | 14 langs | |
|
|
|
* Sentences were cleaned with Gemini 2.5 Flash to remove ungrammatical, controversial or written‑only text. |
|
* Filler‑word lists per language (e.g., “um”, “えーと”) built with Claude & GPT‑o3 and injected near sentence ends to teach the model about interrupted speech. |
|
|
|
All audio/text pairs are released on the [pipecat‑ai/datasets](https://huggingface.co/pipecat-ai/datasets) hub. |
|
|
|
## Evaluation & performance |
|
|
|
### Accuracy on unseen synthetic test set (50 % complete / 50 % incomplete) |
|
| Lang | Acc % | Lang | Acc % | |
|
|------|-------|------|-------| |
|
| EN | 94.3 | IT | 94.4 | |
|
| FR | 95.5 | KO | 95.5 | |
|
| ES | 92.1 | PT | 95.5 | |
|
| DE | 95.8 | TR | 96.8 | |
|
| NL | 96.7 | PL | 94.6 | |
|
| RU | 93.0 | HI | 91.2 | |
|
| ZH | 87.2 | – | – | |
|
|
|
*Human English benchmark (`human_5_all`) : **99 %** accuracy.* |
|
|
|
### Inference latency for 8 s audio |
|
|
|
| Device | Time | |
|
|-------------------------------|------| |
|
| NVIDIA L40S | 12 ms | |
|
| NVIDIA A100 | 19 ms | |
|
| NVIDIA T4 (AWS g4dn.xlarge) | 75 ms | |
|
| 16‑core x86\_64 CPU (Modal) | 410 ms | |
|
|
|
[oai_citation:7‡Daily](https://www.daily.co/blog/smart-turn-v2-faster-inference-and-13-new-languages-for-voice-ai/) |
|
|
|
## How to use – quick start |
|
|
|
```python |
|
from transformers import pipeline |
|
import soundfile as sf |
|
|
|
pipe = pipeline( |
|
"audio-classification", |
|
model="pipecat-ai/smart-turn-v2", |
|
feature_extractor="facebook/wav2vec2-base" |
|
) |
|
|
|
speech, sr = sf.read("user_utterance.wav") |
|
if sr != 16_000: |
|
raise ValueError("Resample to 16 kHz") |
|
|
|
result = pipe(speech, top_k=None)[0] |
|
print(f"Completed turn? {result['label']} Prob: {result['score']:.3f}") |
|
# label == 'complete' → user has finished speaking |
|
``` |
|
|