pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Train a GIVT encoder-decoder model for NYU depth prediction."""
import itertools
import big_vision.configs.common as bvcc
import ml_collections
ConfigDict = ml_collections.ConfigDict
VTT_MODELS = {
'base': dict(num_layers=12, num_decoder_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768),
'large': dict(num_layers=24, num_decoder_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024),
}
RES = 512
PATCH_SIZE = 16
LABEL_RES = 512
LABEL_PATCH_SIZE = 16
QUANTIZATION_BINS = 256
MIN_DEPTH = 0.001
MAX_DEPTH = 10.0
def get_config(arg='split=sweep'):
"""Config for training."""
arg = bvcc.parse_arg(arg, split='sweep', runlocal=False, singlehost=False)
config = ConfigDict()
config.input = {}
config.input.pp = (
f'decode|nyu_depth|'
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
f'resize({RES})|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|copy("labels", "image")|'
f'keep("image", "cond_image")'
)
pp_eval = (
f'decode|nyu_depth|'
f'nyu_eval_crop|'
f'resize({RES})|'
f'resize({LABEL_RES},key="labels",method="nearest")|'
f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|copy("labels", "image")|'
f'keep("image", "cond_image")'
)
pp_predict = (
f'decode|nyu_depth|'
f'nyu_eval_crop|copy("labels","ground_truth")|'
f'resize({RES})|'
f'value_range(-1,1)|'
f'copy("image", "cond_image")|'
f'strong_hash(inkey="tfds_id", outkey="image/id")|'
f'keep("cond_image", "ground_truth", "image/id")'
)
config.input.data = dict(name='nyu_depth_v2', split='train')
config.input.batch_size = 512
config.input.shuffle_buffer_size = 50_000
config.total_epochs = 50
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = None
config.prefetch_to_device = 2
config.seed = 0
# Optimizer section
config.optax_name = 'big_vision.scale_by_adafactor'
config.optax = dict(beta2_cap=0.95)
config.ar_generation_config = ConfigDict()
config.ar_generation_config.temp = 0.9
config.ar_generation_config.temp_probs = 1.0
config.ar_generation_config.beam_size = 2
config.ar_generation_config.fan_size = 8
config.ar_generation_config.rand_top_k = False
config.ar_generation_config.rand_top_k_temp = 1.0
config.lr = 0.001
config.wd = 0.000001
config.lr_mults = [
('pos_embedding_encoder.*', 0.1),
('EmbedPatches.*', 0.1),
('encoder.*', 0.1),
('decoder.*', 1.0)
]
config.schedule = dict(decay_type='cosine', warmup_percent=0.1)
# Oracle section
config.min_depth = MIN_DEPTH
config.max_depth = MAX_DEPTH
config.vae = ConfigDict()
config.vae.model_name = 'proj.givt.vit'
config.vae.model = ConfigDict()
config.vae.model.input_size = (RES, RES)
config.vae.model.patch_size = (PATCH_SIZE, PATCH_SIZE)
config.vae.model.code_len = 256
config.vae.model.width = 768
config.vae.model.enc_depth = 6
config.vae.model.dec_depth = 12
config.vae.model.mlp_dim = 3072
config.vae.model.num_heads = 12
config.vae.model.codeword_dim = 16
config.vae.model.code_dropout = 'none'
config.vae.model.bottleneck_resize = True
# values: (channel index in source image, number of classes)
config.vae.model.inout_specs = {
'depth': (0, QUANTIZATION_BINS),
}
config.vae.model_init = 'gs://big_vision/givt/vae_nyu_depth_params.npz'
# Model section
config.model_name = 'proj.givt.givt'
# # Base model (for exploration)
# config.model_init = {'encoder': 'howto-i21k-B/16'}
# config.model = ConfigDict(VTT_MODELS['base'])
# Large model
config.model_init = {'encoder': 'howto-i21k-L/16'}
config.model_load = dict(dont_load=('cls', 'head/bias', 'head/kernel'))
config.model = ConfigDict(VTT_MODELS['large'])
config.model.patches = (PATCH_SIZE, PATCH_SIZE)
config.model.input_size = (RES, RES)
config.model.posemb_type = 'learn'
config.model.seq_len = config.vae.model.code_len
config.model.num_labels = None
config.model.num_mixtures = 1
config.model.fix_square_plus = True
config.model.out_dim = config.vae.model.codeword_dim
config.model.scale_tol = 1e-6
config.model.dec_dropout_rate = 0.0
# Evaluation section
config.evals = {}
config.evals.val = ConfigDict()
config.evals.val.type = 'mean'
config.evals.val.pred = 'validation'
config.evals.val.data = {**config.input.data}
config.evals.val.data.split = 'validation'
config.evals.val.pp_fn = pp_eval
config.evals.val.log_steps = 250
base = {
'type': 'proj.givt.nyu_depth',
'data': {**config.input.data},
'pp_fn': pp_predict,
'pred': 'sample_depth',
'log_steps': 2000,
'min_depth': MIN_DEPTH,
'max_depth': MAX_DEPTH,
}
config.evals.nyu_depth_val = dict(base)
config.evals.nyu_depth_val.data.split = 'validation'
config.evals.save_pred = dict(base)
config.evals.save_pred.type = 'proj.givt.save_predictions'
del config.evals.save_pred.min_depth, config.evals.save_pred.max_depth
config.evals.save_pred.log_steps = 100_000
config.evals.save_pred.data.split = 'validation[:128]'
config.evals.save_pred.outfile = 'inference.npz'
config.eval_only = False
config.seed = 0
if arg.runlocal:
config.input.batch_size = 4
config.input.shuffle_buffer_size = 10
config.evals.val.log_steps = 20
config.evals.val.data.split = 'validation[:4]'
config.evals.nyu_depth_val.data.split = 'validation[:4]'
config.evals.save_pred.data.split = 'validation[:4]'
config.model.update(VTT_MODELS['base'])
del config.model_init
for k in config.evals.keys():
if k not in ['val', 'nyu_depth_val', 'save_pred']:
del config.evals[k]
return config