File size: 10,078 Bytes
1f96ea2 9e5aed4 c285ed8 9e5aed4 1f96ea2 8712fc6 1f96ea2 fd13ccd 09188dc 1f0b7e0 c303d63 09188dc 1f0b7e0 09188dc c303d63 09188dc c303d63 1f96ea2 9e5aed4 c303d63 1f96ea2 c303d63 1f96ea2 c303d63 b18ead3 1f96ea2 c303d63 9e5aed4 c303d63 1f96ea2 9e5aed4 c303d63 9e5aed4 1f96ea2 9e5aed4 1f96ea2 9e5aed4 1f96ea2 9e5aed4 c303d63 b18ead3 c303d63 b18ead3 c303d63 2c27924 c303d63 b18ead3 9e5aed4 1f96ea2 fd13ccd ccf920f a3302a3 ccf920f a3302a3 ccf920f 301e064 ccf920f a3302a3 301e064 ccf920f 5d2fbb8 ccf920f 1f96ea2 edf5c51 ebfd887 3b10b05 ebfd887 8213695 ebfd887 ccf920f ebfd887 1f96ea2 fd13ccd 15cca67 3b10b05 15cca67 8712fc6 15cca67 6b1120f 15cca67 1f96ea2 b3a7a47 fd13ccd 9e5aed4 1f96ea2 9e5aed4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
---
library_name: transformers
tags:
- torchao
- code
- math
- chat
license: apache-2.0
language:
- multilingual
base_model:
- Qwen/Qwen3-32B
pipeline_tag: text-generation
---
[Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 47% VRAM reduction, around 1.5x speedup and little to no accuracy impact on H100.
# Inference with vLLM
```Shell
# Server
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Qwen3-32B-float8dq --tokenizer Qwen/Qwen3-32B -O3
```
```Shell
# Client
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "pytorch/Qwen3-32B-float8dq",
"messages": [
{"role": "user", "content": "Give me a short introduction to large language models."}
],
"temperature": 0.6,
"top_p": 0.95,
"top_k": 20,
"max_tokens": 32768
}'
```
# Inference with transformers
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "pytorch/Qwen3-32B-float8dq"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
# Quantization Recipe
Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install torchao
pip install torch
pip install accelerate
```
Use the following code to get the float8 model using torchao library:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
model_id = "Qwen/Qwen3-32B"
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
Optionally, upload to your HF hub
```Py
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
| Benchmark | | |
|----------------------------------|----------------|---------------------------|
| | Qwen3-32B | Qwen3-32B-float8dq |
| **General** | | |
| mmlu | 80.71 | 80.67 |
| bbh | 37.49 | 38.01 |
| **Multilingual** | | |
| mgsm_en_cot_es | 58.4 | 52.0 |
| **Math** | | |
| gpqa_main_zeroshot | 41.96 | 42.63 |
| **Overall** | 54.64 | 53.33 |
<details>
<summary> Reproduce Model Quality Results </summary>
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install
## baseline
```Shell
lm_eval --model hf --model_args pretrained=Qwen/Qwen3-32B --tasks mmlu --device cuda:0 --batch_size 8
```
## float8 dynamic quantization (float8dq)
```Shell
export MODEL=pytorch/Qwen3-32B-float8dq
# or
# export MODEL=Qwen/Qwen3-32B
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8
```
</details>
# Memory Usage
| Memory (tested on H100) | | |
|----------------------------------|----------------|-------------------------------|
| | Qwen3-32B | Qwen3-32B-float8dq |
| Peak Memory | 65.72 GB | 34.54 GB (47.44% reduction) |
<details>
<summary> Reproduce Peak Memory Usage Results </summary>
Code
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-32B" # pytorch/Qwen3-32B-float8dq
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
torch.cuda.reset_peak_memory_stats()
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```
</details>
# Model Performance
| Benchmark (Tested on H100) | | |
|----------------------------------|----------------|-------------------------------|
| | Qwen3-32B | Qwen3-32B-float8dq |
| latency (batch_size=1) | 9.1s | 5.77s (1.58x speedup) |
| latency (batch_size=128) | 12.45s | 8.40s (1.48x speedup) |
<details>
<summary> Reproduce latency benchmarks </summary>
**1. Setup**
```Shell
git clone [email protected]:vllm-project/vllm.git
cd vllm
VLLM_USE_PRECOMPILED=1 pip install --editable .
```
**2. Latency benchmarking**
```Shell
export MODEL=Qwen/Qwen3-32B # or pytorch/Qwen3-32B-float8dq
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1
```
</details>
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .
# Resources
* **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
* **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)
# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |