|
--- |
|
library_name: transformers |
|
tags: |
|
- torchao |
|
- code |
|
- math |
|
- chat |
|
license: apache-2.0 |
|
language: |
|
- multilingual |
|
base_model: |
|
- Qwen/Qwen3-32B |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
[Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 47% VRAM reduction, around 1.5x speedup and little to no accuracy impact on H100. |
|
|
|
# Inference with vLLM |
|
```Shell |
|
# Server |
|
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Qwen3-32B-float8dq --tokenizer Qwen/Qwen3-32B -O3 |
|
``` |
|
|
|
```Shell |
|
# Client |
|
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ |
|
"model": "pytorch/Qwen3-32B-float8dq", |
|
"messages": [ |
|
{"role": "user", "content": "Give me a short introduction to large language models."} |
|
], |
|
"temperature": 0.6, |
|
"top_p": 0.95, |
|
"top_k": 20, |
|
"max_tokens": 32768 |
|
}' |
|
``` |
|
|
|
# Inference with transformers |
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "pytorch/Qwen3-32B-float8dq" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
# Quantization Recipe |
|
|
|
Install the required packages: |
|
|
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install torchao |
|
pip install torch |
|
pip install accelerate |
|
``` |
|
|
|
Use the following code to get the float8 model using torchao library: |
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
model_id = "Qwen/Qwen3-32B" |
|
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow |
|
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) |
|
quantization_config = TorchAoConfig(quant_type=quant_config) |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=quantization_config, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
``` |
|
|
|
Optionally, upload to your HF hub |
|
```Py |
|
USER_ID = "YOUR_USER_ID" |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
``` |
|
|
|
# Model Quality |
|
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. |
|
|
|
| Benchmark | | | |
|
|----------------------------------|----------------|---------------------------| |
|
| | Qwen3-32B | Qwen3-32B-float8dq | |
|
| **General** | | | |
|
| mmlu | 80.71 | 80.67 | |
|
| bbh | 37.49 | 38.01 | |
|
| **Multilingual** | | | |
|
| mgsm_en_cot_es | 58.4 | 52.0 | |
|
| **Math** | | | |
|
| gpqa_main_zeroshot | 41.96 | 42.63 | |
|
| **Overall** | 54.64 | 53.33 | |
|
|
|
|
|
<details> |
|
<summary> Reproduce Model Quality Results </summary> |
|
|
|
Need to install lm-eval from source: |
|
https://github.com/EleutherAI/lm-evaluation-harness#install |
|
|
|
## baseline |
|
```Shell |
|
lm_eval --model hf --model_args pretrained=Qwen/Qwen3-32B --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
|
|
## float8 dynamic quantization (float8dq) |
|
```Shell |
|
export MODEL=pytorch/Qwen3-32B-float8dq |
|
# or |
|
# export MODEL=Qwen/Qwen3-32B |
|
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
</details> |
|
|
|
# Memory Usage |
|
|
|
| Memory (tested on H100) | | | |
|
|----------------------------------|----------------|-------------------------------| |
|
| | Qwen3-32B | Qwen3-32B-float8dq | |
|
| Peak Memory | 65.72 GB | 34.54 GB (47.44% reduction) | |
|
|
|
<details> |
|
<summary> Reproduce Peak Memory Usage Results </summary> |
|
|
|
Code |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "Qwen/Qwen3-32B" # pytorch/Qwen3-32B-float8dq |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
# prepare the model input |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
|
|
|
|
mem = torch.cuda.max_memory_reserved() / 1e9 |
|
print(f"Peak Memory Usage: {mem:.02f} GB") |
|
``` |
|
</details> |
|
|
|
|
|
# Model Performance |
|
|
|
|
|
| Benchmark (Tested on H100) | | | |
|
|----------------------------------|----------------|-------------------------------| |
|
| | Qwen3-32B | Qwen3-32B-float8dq | |
|
| latency (batch_size=1) | 9.1s | 5.77s (1.58x speedup) | |
|
| latency (batch_size=128) | 12.45s | 8.40s (1.48x speedup) | |
|
|
|
<details> |
|
<summary> Reproduce latency benchmarks </summary> |
|
|
|
**1. Setup** |
|
```Shell |
|
git clone [email protected]:vllm-project/vllm.git |
|
cd vllm |
|
VLLM_USE_PRECOMPILED=1 pip install --editable . |
|
``` |
|
|
|
**2. Latency benchmarking** |
|
```Shell |
|
export MODEL=Qwen/Qwen3-32B # or pytorch/Qwen3-32B-float8dq |
|
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 |
|
``` |
|
</details> |
|
|
|
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization |
|
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). |
|
|
|
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . |
|
|
|
# Resources |
|
* **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) |
|
* **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) |
|
|
|
# Disclaimer |
|
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. |
|
|
|
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |