File size: 18,852 Bytes
8606c41
 
 
 
 
 
190fe05
8606c41
 
 
6b0ec56
8606c41
 
 
 
4db84b8
8606c41
 
10072aa
4db84b8
 
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736c554
 
b06b3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606c41
659c5db
 
8606c41
 
 
 
3ebbf3a
8606c41
3ebbf3a
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8460b29
736c554
 
 
 
 
b06b3a0
 
736c554
 
57874c5
 
 
 
 
b06b3a0
 
57874c5
 
8460b29
659c5db
 
8606c41
 
659c5db
8606c41
 
 
 
 
 
 
 
 
 
 
 
1bb4615
8606c41
 
1bb4615
 
57874c5
c226d55
8606c41
 
 
 
57874c5
 
8606c41
57874c5
8606c41
 
57874c5
 
8606c41
57874c5
8606c41
 
 
57874c5
c226d55
57874c5
 
c226d55
57874c5
c226d55
 
57874c5
 
c226d55
57874c5
c226d55
 
 
57874c5
8606c41
 
 
 
 
 
 
 
 
 
 
c226d55
84fefe6
 
 
57874c5
 
 
 
8606c41
 
 
 
 
 
 
 
c226d55
 
84fefe6
 
 
 
c226d55
57874c5
 
 
 
 
 
 
8606c41
 
 
 
 
 
6b0ec56
8606c41
 
 
659c5db
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736c554
8606c41
3ebbf3a
 
736c554
 
 
8606c41
 
 
 
 
736c554
 
8606c41
d785667
8606c41
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
library_name: pytorch
license: mit
tags:
- foundation
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/openai_clip/web-assets/model_demo.png)

# OpenAI-Clip: Optimized for Mobile Deployment
## Multi-modal foundational model for vision and language tasks like image/text similarity and for zero-shot image classification


Contrastive Language-Image Pre-Training (CLIP) uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features can then be used for a variety of zero-shot learning tasks.

This model is an implementation of OpenAI-Clip found [here](https://github.com/openai/CLIP/).


This repository provides scripts to run OpenAI-Clip on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/openai_clip).


### Model Details

- **Model Type:** Image classification
- **Model Stats:**
  - Model checkpoint: ViT-B/16
  - Image input resolution: 224x224
  - Text context length: 77
  - Number of parameters (CLIPTextEncoder): 76.0M
  - Model size (CLIPTextEncoder): 290 MB
  - Number of parameters (CLIPImageEncoder): 115M
  - Model size (CLIPImageEncoder): 437 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 19.929 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 16.659 ms | 1 - 3 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 40.603 ms | 0 - 369 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 14.675 ms | 0 - 365 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 11.943 ms | 1 - 19 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 30.392 ms | 0 - 222 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 14.028 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 8.959 ms | 1 - 302 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 27.795 ms | 1 - 219 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | TFLITE | 309.047 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | QNN | 257.356 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 19.951 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 16.692 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8295P ADP | SA8295P | TFLITE | 24.429 ms | 0 - 314 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8295P ADP | SA8295P | QNN | 20.246 ms | 1 - 18 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 20.34 ms | 0 - 36 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 16.699 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8775P ADP | SA8775P | TFLITE | 28.395 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8775P ADP | SA8775P | QNN | 23.499 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 309.047 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 257.356 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 19.941 ms | 0 - 37 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 16.579 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 28.395 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 23.499 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 21.872 ms | 0 - 326 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 18.207 ms | 1 - 306 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 17.329 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 41.047 ms | 171 - 171 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.467 ms | 0 - 17 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.03 ms | 0 - 2 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.111 ms | 0 - 385 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.062 ms | 0 - 146 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.69 ms | 0 - 18 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.511 ms | 0 - 70 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.59 ms | 0 - 143 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.577 ms | 0 - 127 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.644 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | TFLITE | 59.152 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | QNN | 49.955 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.472 ms | 0 - 10 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.03 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8295P ADP | SA8295P | TFLITE | 5.901 ms | 0 - 127 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8295P ADP | SA8295P | QNN | 5.405 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.488 ms | 0 - 13 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.066 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8775P ADP | SA8775P | TFLITE | 6.573 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8775P ADP | SA8775P | QNN | 5.754 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 59.152 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 49.955 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.393 ms | 0 - 25 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.029 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 6.573 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.754 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.067 ms | 0 - 134 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.491 ms | 0 - 131 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.369 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.289 ms | 124 - 124 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[openai-clip]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.openai_clip.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.openai_clip.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.openai_clip.export
```
```
Profiling Results
------------------------------------------------------------
CLIPImageEncoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 19.9                   
Estimated peak memory usage (MB): [0, 34]                
Total # Ops                     : 659                    
Compute Unit(s)                 : NPU (659 ops)          

------------------------------------------------------------
CLIPTextEncoder
Device                          : Samsung Galaxy S23 (13)  
Runtime                         : TFLITE                   
Estimated inference time (ms)   : 4.5                      
Estimated peak memory usage (MB): [0, 17]                  
Total # Ops                     : 660                      
Compute Unit(s)                 : NPU (658 ops) CPU (2 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/openai_clip/qai_hub_models/models/OpenAI-Clip/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.openai_clip import Model

# Load the model
model = Model.from_pretrained()
image_encoder_model = model.image_encoder
text_encoder_model = model.text_encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
image_encoder_input_shape = image_encoder_model.get_input_spec()
image_encoder_sample_inputs = image_encoder_model.sample_inputs()

traced_image_encoder_model = torch.jit.trace(image_encoder_model, [torch.tensor(data[0]) for _, data in image_encoder_sample_inputs.items()])

# Compile model on a specific device
image_encoder_compile_job = hub.submit_compile_job(
    model=traced_image_encoder_model ,
    device=device,
    input_specs=image_encoder_model.get_input_spec(),
)

# Get target model to run on-device
image_encoder_target_model = image_encoder_compile_job.get_target_model()
# Trace model
text_encoder_input_shape = text_encoder_model.get_input_spec()
text_encoder_sample_inputs = text_encoder_model.sample_inputs()

traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])

# Compile model on a specific device
text_encoder_compile_job = hub.submit_compile_job(
    model=traced_text_encoder_model ,
    device=device,
    input_specs=text_encoder_model.get_input_spec(),
)

# Get target model to run on-device
text_encoder_target_model = text_encoder_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
image_encoder_profile_job = hub.submit_profile_job(
    model=image_encoder_target_model,
    device=device,
)
text_encoder_profile_job = hub.submit_profile_job(
    model=text_encoder_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
image_encoder_input_data = image_encoder_model.sample_inputs()
image_encoder_inference_job = hub.submit_inference_job(
    model=image_encoder_target_model,
    device=device,
    inputs=image_encoder_input_data,
)
image_encoder_inference_job.download_output_data()
text_encoder_input_data = text_encoder_model.sample_inputs()
text_encoder_inference_job = hub.submit_inference_job(
    model=text_encoder_target_model,
    device=device,
    inputs=text_encoder_input_data,
)
text_encoder_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on OpenAI-Clip's performance across various devices [here](https://aihub.qualcomm.com/models/openai_clip).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of OpenAI-Clip can be found
  [here](https://github.com/openai/CLIP/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
* [Source Model Implementation](https://github.com/openai/CLIP/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).