library_name: pytorch
license: creativeml-openrail-m
tags:
- generative_ai
- quantized
- android
pipeline_tag: unconditional-image-generation
Stable-Diffusion-v2.1: Optimized for Mobile Deployment
State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v2.1 found here.
This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Image generation
- Model Stats:
- Input: Text prompt to generate image
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
TextEncoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.622 ms | 0 - 2 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
TextEncoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.851 ms | 0 - 19 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
TextEncoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.198 ms | 0 - 15 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.896 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA7255P ADP | SA7255P | QNN | 88.097 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.68 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.651 ms | 0 - 5 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | SA8775P ADP | SA8775P | QNN | 7.894 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 88.097 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.643 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
TextEncoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 7.894 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 97.767 ms | 0 - 3 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
UnetQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 69.335 ms | 0 - 19 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
UnetQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 61.27 ms | 0 - 14 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 99.423 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA7255P ADP | SA7255P | QNN | 1468.169 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 96.812 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 97.233 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | SA8775P ADP | SA8775P | QNN | 110.658 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 1468.169 ms | 0 - 8 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 98.147 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
UnetQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 110.658 ms | 0 - 9 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 274.636 ms | 0 - 4 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
VaeDecoderQuantizable | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 206.701 ms | 0 - 18 MB | W8A16 | NPU | Stable-Diffusion-v2.1.so |
VaeDecoderQuantizable | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 189.387 ms | 0 - 355 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 266.827 ms | 0 - 0 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA7255P ADP | SA7255P | QNN | 4462.005 ms | 1 - 10 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8255 (Proxy) | SA8255P Proxy | QNN | 274.28 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8650 (Proxy) | SA8650P Proxy | QNN | 272.687 ms | 0 - 2 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | SA8775P ADP | SA8775P | QNN | 301.027 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 4462.005 ms | 1 - 10 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 259.311 ms | 0 - 3 MB | W8A16 | NPU | Use Export Script |
VaeDecoderQuantizable | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 301.027 ms | 0 - 10 MB | W8A16 | NPU | Use Export Script |
Installation
Install the package via pip:
pip install "qai-hub-models[stable-diffusion-v2-1-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 6.6
Estimated peak memory usage (MB): [0, 2]
Total # Ops : 787
Compute Unit(s) : NPU (787 ops)
------------------------------------------------------------
UnetQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 97.8
Estimated peak memory usage (MB): [0, 3]
Total # Ops : 5891
Compute Unit(s) : NPU (5891 ops)
------------------------------------------------------------
VaeDecoderQuantizable
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 274.6
Estimated peak memory usage (MB): [0, 4]
Total # Ops : 189
Compute Unit(s) : NPU (189 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v2.1's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Stable-Diffusion-v2.1 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.