rajevan123's picture
End of training
ee90e51 verified
metadata
license: cc-by-4.0
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
base_model: deepset/roberta-base-squad2
model-index:
  - name: >-
      STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-115-with-higher-r-mid
    results: []

STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-115-with-higher-r-mid

This model is a fine-tuned version of deepset/roberta-base-squad2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9056
  • Accuracy: 0.6040

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 76 1.2568 0.4161
No log 2.0 152 1.1655 0.4603
No log 3.0 228 1.0574 0.5120
No log 4.0 304 0.9846 0.5574
No log 5.0 380 0.9665 0.5675
No log 6.0 456 0.9544 0.5738
1.0456 7.0 532 0.9503 0.5763
1.0456 8.0 608 0.9269 0.5876
1.0456 9.0 684 0.9233 0.5889
1.0456 10.0 760 0.9264 0.5927
1.0456 11.0 836 0.9092 0.5927
1.0456 12.0 912 0.9187 0.5914
1.0456 13.0 988 0.9122 0.6003
0.8486 14.0 1064 0.9091 0.5977
0.8486 15.0 1140 0.9079 0.5965
0.8486 16.0 1216 0.9144 0.5952
0.8486 17.0 1292 0.9049 0.5977
0.8486 18.0 1368 0.9257 0.5939
0.8486 19.0 1444 0.9006 0.5952
0.8112 20.0 1520 0.9008 0.6015
0.8112 21.0 1596 0.9044 0.6040
0.8112 22.0 1672 0.9008 0.6053
0.8112 23.0 1748 0.9052 0.6028
0.8112 24.0 1824 0.9065 0.6028
0.8112 25.0 1900 0.9015 0.6053
0.8112 26.0 1976 0.9141 0.5965
0.7992 27.0 2052 0.9072 0.6053
0.7992 28.0 2128 0.9042 0.6053
0.7992 29.0 2204 0.9054 0.6040
0.7992 30.0 2280 0.9056 0.6040

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2