rajistics's picture
update model card README.md
8d690de
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_500
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: train
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9509293680297398
          - name: Recall
            type: recall
            value: 0.9573353293413174
          - name: F1
            type: f1
            value: 0.9541215964192465
          - name: Accuracy
            type: accuracy
            value: 0.9609507640067911

layoutlmv3-finetuned-cord_500

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2339
  • Precision: 0.9509
  • Recall: 0.9573
  • F1: 0.9541
  • Accuracy: 0.9610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.5 250 0.9950 0.7114 0.7784 0.7434 0.7903
1.3831 5.0 500 0.5152 0.8483 0.8787 0.8632 0.8816
1.3831 7.5 750 0.3683 0.9013 0.9154 0.9083 0.9240
0.3551 10.0 1000 0.3051 0.9201 0.9304 0.9252 0.9363
0.3551 12.5 1250 0.2636 0.9375 0.9424 0.9399 0.9457
0.1562 15.0 1500 0.2498 0.9385 0.9476 0.9430 0.9508
0.1562 17.5 1750 0.2380 0.9414 0.9499 0.9456 0.9559
0.0863 20.0 2000 0.2355 0.9400 0.9491 0.9445 0.9542
0.0863 22.5 2250 0.2268 0.9451 0.9536 0.9493 0.9601
0.0512 25.0 2500 0.2277 0.9429 0.9513 0.9471 0.9588
0.0512 27.5 2750 0.2315 0.9473 0.9551 0.9512 0.9593
0.0358 30.0 3000 0.2294 0.9509 0.9573 0.9541 0.9605
0.0358 32.5 3250 0.2330 0.9458 0.9543 0.9501 0.9593
0.028 35.0 3500 0.2374 0.9487 0.9558 0.9523 0.9597
0.028 37.5 3750 0.2374 0.9501 0.9558 0.9530 0.9593
0.0244 40.0 4000 0.2339 0.9509 0.9573 0.9541 0.9610

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1