File size: 11,916 Bytes
257098d 7176419 0346762 a60c8b9 0346762 a0580e3 0346762 d9a0ef6 0346762 30b7244 a0580e3 30b7244 0346762 8559cc7 25edf8d 8559cc7 0346762 30b7244 a60c8b9 f331362 c2bb0db f331362 a60c8b9 0346762 d9a0ef6 0346762 7176419 14c99c5 0346762 f276e75 0346762 7c6c8d7 0346762 c2bb0db 0346762 c2bb0db f331362 0346762 8559cc7 7c6c8d7 a7da197 8c6a1ad a7da197 8c6a1ad a7da197 8c6a1ad 7c6c8d7 8559cc7 7c6c8d7 a60c8b9 a0580e3 8559cc7 a0580e3 0346762 c2bb0db 0346762 f331362 8559cc7 a7da197 38217d8 c2bb0db d359671 0346762 c2bb0db 0346762 a7da197 38217d8 c2bb0db 0346762 8c6a1ad 0346762 8c6a1ad c2bb0db 0346762 a7da197 0346762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import subprocess
import torch
# if torch.cuda.is_available():
# process = subprocess.Popen(['pip', 'uninstall', 'onnxruntime'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# stdout, stderr = process.communicate()
# process = subprocess.Popen(['pip', 'install', '--force-reinstall', 'onnxruntime-gpu'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# stdout, stderr = process.communicate()
import whisperx
import os
import time
import json
import base64
import numpy as np
DEVNULL = open(os.devnull, 'w')
# from transformers.pipelines.audio_utils import ffmpeg_read
from typing import Dict, List, Any
import logging
logger = logging.getLogger(__name__)
SAMPLE_RATE = 16000
def whisper_config():
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model = "large-v2"
batch_size = 16 # reduce if low on GPU mem, 16 initailly
# change to "int8" if low on GPU mem (may reduce accuracy)
compute_type = "float16" if device == "cuda" else "int8"
return device, batch_size, compute_type, whisper_model
# From https://gist.github.com/kylemcdonald/85d70bf53e207bab3775
# load_audio can not detect the input type
def ffmpeg_load_audio(filename, sr=44100, mono=False, normalize=True, in_type=np.int16, out_type=np.float32):
channels = 1 if mono else 2
format_strings = {
np.float64: 'f64le',
np.float32: 'f32le',
np.int16: 's16le',
np.int32: 's32le',
np.uint32: 'u32le'
}
format_string = format_strings[in_type]
command = [
'ffmpeg',
'-i', filename,
'-f', format_string,
'-acodec', 'pcm_' + format_string,
'-ar', str(sr),
'-ac', str(channels),
'-']
p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=DEVNULL, bufsize=4096)
bytes_per_sample = np.dtype(in_type).itemsize
frame_size = bytes_per_sample * channels
chunk_size = frame_size * sr # read in 1-second chunks
raw = b''
with p.stdout as stdout:
while True:
data = stdout.read(chunk_size)
if data:
raw += data
else:
break
audio = np.fromstring(raw, dtype=in_type).astype(out_type)
if channels > 1:
audio = audio.reshape((-1, channels)).transpose()
if audio.size == 0:
return audio, sr
if issubclass(out_type, np.floating):
if normalize:
peak = np.abs(audio).max()
if peak > 0:
audio /= peak
elif issubclass(in_type, np.integer):
audio /= np.iinfo(in_type).max
return audio
# FROM HuggingFace
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
"""
Helper function to read an audio file through ffmpeg.
"""
ar = f"{sampling_rate}"
ac = "1"
format_for_conversion = "f32le"
ffmpeg_command = [
"ffmpeg",
"-i",
"pipe:0",
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
try:
with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process:
output_stream = ffmpeg_process.communicate(bpayload)
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error
out_bytes = output_stream[0]
audio = np.frombuffer(out_bytes, np.float32)
if audio.shape[0] == 0:
raise ValueError(
"Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has "
"a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote "
"URL, ensure that the URL is the full address to **download** the audio file."
)
return audio
# FROM whisperX
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
try:
# Launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI to be installed.
cmd = [
"ffmpeg",
"-nostdin",
"-threads",
"0",
"-i",
file,
"-f",
"s16le",
"-ac",
"1",
"-acodec",
"pcm_s16le",
"-ar",
str(sr),
"-",
]
out = subprocess.run(cmd, capture_output=True, check=True).stdout
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def display_gpu_infos():
if not torch.cuda.is_available():
return "NO CUDA"
infos = "torch.cuda.current_device(): " + str(torch.cuda.current_device()) + ", "
infos = infos + "torch.cuda.device(0): " + str(torch.cuda.device(0)) + ", "
infos = infos + "torch.cuda.device_count(): " + str(torch.cuda.device_count()) + ", "
infos = infos + "torch.cuda.get_device_name(0): " + str(torch.cuda.get_device_name(0))
return infos
class EndpointHandler():
def __init__(self, path=""):
# load the model
device, batch_size, compute_type, whisper_model = whisper_config()
self.model = whisperx.load_model(whisper_model, device=device, compute_type=compute_type)
# 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 ERIC
# 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 OLD
logger.info(f"Model {whisper_model} initialized")
self.diarize_model = whisperx.DiarizationPipeline(
"pyannote/speaker-diarization-3.1",
use_auth_token="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", device=device)
logger.info(f"Model for diarization initialized")
def __call__(self, data: Any) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the deserialized audio file as bytes
Return:
A :obj:`dict`:. base64 encoded image
"""
# get the start time
st = time.time()
logger.info("--------------- CONFIGURATION ------------------------")
device, batch_size, compute_type, whisper_model = whisper_config()
logger.info(f"device: {device}, batch_size: {batch_size}, compute_type:{compute_type}, whisper_model: {whisper_model}")
logger.info(display_gpu_infos())
# 1. process input
inputs_encoded = data.pop("inputs", data)
parameters = data.pop("parameters", None)
options = data.pop("options", None)
# OPTIONS are given as parameters
info = False
if options and "info" in options.keys() and options['info']:
info = True
alignment = False
if options and "alignment" in options.keys() and options['alignment']:
alignment = True
diarization = True
if options and "diarization" in options.keys() and not options['diarization']:
diarization = False
language = "fr"
if parameters and "language" in parameters.keys():
language = parameters["language"]
inputs = base64.b64decode(inputs_encoded)
# make a tmp file
with open('/tmp/myfile.tmp', 'wb') as w:
w.write(inputs)
# audio_nparray = ffmpeg_load_audio('/tmp/myfile.tmp', sr=SAMPLE_RATE, mono=True, out_type=np.float32)
audio_nparray = load_audio('/tmp/myfile.tmp', sr=SAMPLE_RATE)
# clean up
os.remove('/tmp/myfile.tmp')
# audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)
# audio_tensor= torch.from_numpy(audio_nparray)
# get the end time
et = time.time()
# get the execution time
elapsed_time = et - st
logger.info(f"TIME for audio processing : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio processing : {elapsed_time:.2f} seconds")
# 2. transcribe
logger.info("--------------- STARTING TRANSCRIPTION ------------------------")
transcription = self.model.transcribe(audio_nparray, batch_size=batch_size,language=language)
if info:
print(transcription["segments"][0:10000]) # before alignment
logger.info(transcription["segments"][0:10000])
try:
first_text = transcription["segments"][0]["text"]
except:
logger.warning("No transcription")
return {"transcription": transcription["segments"]}
# get the execution time
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for audio transcription : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio transcription : {elapsed_time:.2f} seconds")
# 3. align
if alignment:
logger.info("--------------- STARTING ALIGNMENT ------------------------")
model_a, metadata = whisperx.load_align_model(
language_code=transcription["language"], device=device)
transcription = whisperx.align(
transcription["segments"], model_a, metadata, audio_nparray, device, return_char_alignments=False)
if info:
print(transcription["segments"][0:10000])
logger.info(transcription["segments"][0:10000])
# get the execution time
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for alignment : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for alignment : {elapsed_time:.2f} seconds")
# 4. Assign speaker labels
if diarization:
logger.info("--------------- STARTING DIARIZATION ------------------------")
# add min/max number of speakers if known
diarize_segments = self.diarize_model(audio_nparray)
if info:
print(diarize_segments)
logger.info(diarize_segments)
# diarize_model(audio, min_speakers=min_speakers, max_speakers=max_speakers)
transcription = whisperx.assign_word_speakers(diarize_segments, transcription)
if info:
print(transcription["segments"][0:10000])
logger.info(transcription["segments"][0:10000]) # segments are now assigned speaker IDs
# get the execution time
et = time.time()
elapsed_time = et - st
st = time.time()
logger.info(f"TIME for audio diarization : {elapsed_time:.2f} seconds")
if info:
print(f"TIME for audio diarization : {elapsed_time:.2f} seconds")
# results_json = json.dumps(results)
# return {"results": results_json}
return {"transcription": transcription["segments"]}
|