rhlc's picture
Model save
a017d74 verified
|
raw
history blame
2.37 kB
metadata
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-finetuned-alzheimers
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8625

vit-msn-small-finetuned-alzheimers

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3612
  • Accuracy: 0.8625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9297 0.9778 22 0.8769 0.6156
0.8601 2.0 45 0.7799 0.6344
0.7954 2.9778 67 0.7197 0.6828
0.7468 4.0 90 0.7003 0.6734
0.6935 4.9778 112 0.6064 0.7547
0.6271 6.0 135 0.5648 0.7688
0.5622 6.9778 157 0.4824 0.8094
0.4815 8.0 180 0.4012 0.8609
0.4771 8.9778 202 0.3799 0.8562
0.4171 9.7778 220 0.3612 0.8625

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1