jaffe_V2_50

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7217
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.9638 0.2333
No log 2.0 2 1.7893 0.3333
No log 3.0 3 1.8759 0.1667
No log 4.0 4 1.6759 0.3667
No log 5.0 5 1.5139 0.5
No log 6.0 6 1.4280 0.5667
No log 7.0 7 1.3688 0.5667
No log 8.0 8 1.2819 0.6
No log 9.0 9 1.1884 0.6
1.5329 10.0 10 1.1448 0.6
1.5329 11.0 11 1.0732 0.7
1.5329 12.0 12 0.9793 0.7333
1.5329 13.0 13 0.8830 0.7333
1.5329 14.0 14 0.8366 0.7667
1.5329 15.0 15 0.8027 0.7333
1.5329 16.0 16 0.7952 0.7333
1.5329 17.0 17 0.7746 0.7333
1.5329 18.0 18 0.7571 0.7667
1.5329 19.0 19 0.7256 0.7667
0.5232 20.0 20 0.7217 0.8

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ricardoSLabs/jaffe_V2_50

Finetuned
(75)
this model

Evaluation results