jaffe_V2_50 / README.md
ricardoSLabs's picture
End of training
19efa96 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: jaffe_V2_50
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8

jaffe_V2_50

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7217
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.9638 0.2333
No log 2.0 2 1.7893 0.3333
No log 3.0 3 1.8759 0.1667
No log 4.0 4 1.6759 0.3667
No log 5.0 5 1.5139 0.5
No log 6.0 6 1.4280 0.5667
No log 7.0 7 1.3688 0.5667
No log 8.0 8 1.2819 0.6
No log 9.0 9 1.1884 0.6
1.5329 10.0 10 1.1448 0.6
1.5329 11.0 11 1.0732 0.7
1.5329 12.0 12 0.9793 0.7333
1.5329 13.0 13 0.8830 0.7333
1.5329 14.0 14 0.8366 0.7667
1.5329 15.0 15 0.8027 0.7333
1.5329 16.0 16 0.7952 0.7333
1.5329 17.0 17 0.7746 0.7333
1.5329 18.0 18 0.7571 0.7667
1.5329 19.0 19 0.7256 0.7667
0.5232 20.0 20 0.7217 0.8

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0