|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: llama3 |
|
language: |
|
- ja |
|
- en |
|
tags: |
|
- llama |
|
- llama-3 |
|
- gptq |
|
inference: false |
|
--- |
|
|
|
# `Llama 3 Youko 70B Instruct GPTQ (rinna/llama-3-youko-70b-instruct-gptq)` |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
# Overview |
|
|
|
rinna/llama-3-youko-70b-instruct-gptq is the quantized model for [rinna/llama-3-youko-70b-instruct](https://huggingface.co/rinna/llama-3-youko-70b-instruct) using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ). The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference. |
|
|
|
| Size | Continual Pre-Training | Instruction-Tuning | |
|
| :- | :- | :- | |
|
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) | |
|
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) | |
|
|
|
* **Training: Built with Meta Llama 3** |
|
|
|
See [rinna/llama-3-youko-70b-instruct](https://huggingface.co/rinna/llama-3-youko-70b-instruct) for details about model architecture and data. |
|
|
|
|
|
* **Contributors** |
|
|
|
- [Toshiaki Wakatsuki](https://huggingface.co/t-w) |
|
- [Koh Mitsuda](https://huggingface.co/mitsu-koh) |
|
- [Xinqi Chen](https://huggingface.co/Keely0419) |
|
- [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
We found this instruction-tuned model tends to generate repeated text more often than its base counterpart, and thus we set repetition_penalty=1.1 for better generation performance. The same repetition penalty was applied to the instruction-tuned model in the aforementioned evaluation experiments. |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "rinna/llama-3-youko-70b-instruct-gptq" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"}, |
|
{"role": "user", "content": "西田幾多郎とはどんな人物ですか?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.convert_tokens_to_ids("<|end_of_text|>"), |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=512, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
repetition_penalty=1.1, |
|
) |
|
|
|
response = outputs[0][input_ids.shape[-1]:] |
|
response = tokenizer.decode(response, skip_special_tokens=True) |
|
print(response) |
|
~~~~ |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) tokenizer. |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-llama-3-youko-70b-instruct-gptq, |
|
title = {rinna/llama-3-youko-70b-instruct-gptq}, |
|
author = {Wakatsuki, Toshiaki and Mitsuda, Koh and Chen, Xinqi and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
--- |
|
|
|
# References |
|
```bibtex |
|
@article{llama3modelcard, |
|
title = {Llama 3 Model Card}, |
|
author = {AI@Meta}, |
|
year = {2024}, |
|
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} |
|
} |
|
|
|
@article{frantar2022gptq, |
|
title = {{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers}, |
|
author = {Frantar, Elias and Ashkboos, Saleh and Hoefler, Torsten and Alistarh, Dan}, |
|
year = {2022}, |
|
url = {https://arxiv.org/abs/2210.17323} |
|
} |
|
``` |
|
--- |
|
|
|
# License |
|
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/) |