rk68's picture
End of training
4a73341 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: distilbert-q-classifier-3
    results: []

distilbert-q-classifier-3

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3192
  • Accuracy: 0.9238
  • Precision Weighted: 0.9240
  • Recall Weighted: 0.9238
  • F1 Weighted: 0.9239
  • Precision Macro: 0.9240
  • Recall Macro: 0.9241
  • F1 Macro: 0.9240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Weighted Recall Weighted F1 Weighted Precision Macro Recall Macro F1 Macro
No log 1.0 68 0.4096 0.8558 0.8587 0.8558 0.8567 0.8588 0.8561 0.8569
No log 2.0 136 0.3029 0.8963 0.8959 0.8963 0.8959 0.8965 0.8964 0.8962
No log 3.0 204 0.2803 0.8914 0.8935 0.8914 0.8898 0.8942 0.8911 0.8900
No log 4.0 272 0.2651 0.9109 0.9132 0.9109 0.9114 0.9135 0.9105 0.9113
No log 5.0 340 0.2840 0.9222 0.9247 0.9222 0.9226 0.9241 0.9231 0.9228
No log 6.0 408 0.2939 0.9254 0.9253 0.9254 0.9253 0.9252 0.9258 0.9254
No log 7.0 476 0.3011 0.9238 0.9242 0.9238 0.9239 0.9241 0.9242 0.9241
0.2181 8.0 544 0.3170 0.9190 0.9199 0.9190 0.9192 0.9201 0.9186 0.9191
0.2181 9.0 612 0.3135 0.9222 0.9224 0.9222 0.9223 0.9225 0.9220 0.9223
0.2181 10.0 680 0.3192 0.9238 0.9240 0.9238 0.9239 0.9240 0.9241 0.9240

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1