aesthetics_v2 / README.md
robertsw's picture
robertsw/aesthetics_v1
1b6151e verified
|
raw
history blame
2.76 kB
metadata
license: apache-2.0
base_model: facebook/dinov2-large
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: aesthetics_v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5580614847630554

aesthetics_v2

This model is a fine-tuned version of facebook/dinov2-large on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6501
  • Accuracy: 0.5581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1465 0.17 20 1.6860 0.5313
1.2703 0.34 40 1.8412 0.5014
1.3152 0.52 60 1.8200 0.5042
1.2313 0.69 80 1.7971 0.5112
1.3476 0.86 100 1.7649 0.5100
1.2597 1.03 120 1.7454 0.5175
1.0094 1.2 140 1.7356 0.5257
0.9743 1.37 160 1.7074 0.5352
1.0209 1.55 180 1.7331 0.5322
1.0692 1.72 200 1.7370 0.5331
1.0556 1.89 220 1.6788 0.5487
0.8634 2.06 240 1.6644 0.5536
0.79 2.23 260 1.6848 0.5531
0.7916 2.4 280 1.6761 0.5528
0.7454 2.58 300 1.6520 0.5534
0.7497 2.75 320 1.6337 0.5554
0.7537 2.92 340 1.6501 0.5581

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2