|
--- |
|
license: apache-2.0 |
|
base_model: facebook/dinov2-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: aesthetics_v2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5580614847630554 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# aesthetics_v2 |
|
|
|
This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6501 |
|
- Accuracy: 0.5581 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.1465 | 0.17 | 20 | 1.6860 | 0.5313 | |
|
| 1.2703 | 0.34 | 40 | 1.8412 | 0.5014 | |
|
| 1.3152 | 0.52 | 60 | 1.8200 | 0.5042 | |
|
| 1.2313 | 0.69 | 80 | 1.7971 | 0.5112 | |
|
| 1.3476 | 0.86 | 100 | 1.7649 | 0.5100 | |
|
| 1.2597 | 1.03 | 120 | 1.7454 | 0.5175 | |
|
| 1.0094 | 1.2 | 140 | 1.7356 | 0.5257 | |
|
| 0.9743 | 1.37 | 160 | 1.7074 | 0.5352 | |
|
| 1.0209 | 1.55 | 180 | 1.7331 | 0.5322 | |
|
| 1.0692 | 1.72 | 200 | 1.7370 | 0.5331 | |
|
| 1.0556 | 1.89 | 220 | 1.6788 | 0.5487 | |
|
| 0.8634 | 2.06 | 240 | 1.6644 | 0.5536 | |
|
| 0.79 | 2.23 | 260 | 1.6848 | 0.5531 | |
|
| 0.7916 | 2.4 | 280 | 1.6761 | 0.5528 | |
|
| 0.7454 | 2.58 | 300 | 1.6520 | 0.5534 | |
|
| 0.7497 | 2.75 | 320 | 1.6337 | 0.5554 | |
|
| 0.7537 | 2.92 | 340 | 1.6501 | 0.5581 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.0 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|