ia_collab_sentiment / README.md
rodrigorcarmo's picture
refactor: changing from sklearn model to pipeline
186af37 verified
|
raw
history blame
16.9 kB
metadata
library_name: sklearn
license: mit
tags:
  - sklearn
  - skops
  - text-classification
model_format: pickle
model_file: pipeline_sentiment_analysis.pkl

Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('vectorizer', TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),
sublinear_tf=True)), ('mnb', MultinomialNB())]
verbose False
vectorizer TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),
sublinear_tf=True)
mnb MultinomialNB()
vectorizer__analyzer word
vectorizer__binary False
vectorizer__decode_error strict
vectorizer__dtype <class 'numpy.float64'>
vectorizer__encoding latin-1
vectorizer__input content
vectorizer__lowercase True
vectorizer__max_df 1.0
vectorizer__max_features
vectorizer__min_df 5
vectorizer__ngram_range (1, 2)
vectorizer__norm l2
vectorizer__preprocessor
vectorizer__smooth_idf True
vectorizer__stop_words
vectorizer__strip_accents
vectorizer__sublinear_tf True
vectorizer__token_pattern (?u)\b\w\w+\b
vectorizer__tokenizer
vectorizer__use_idf True
vectorizer__vocabulary
mnb__alpha 1.0
mnb__class_prior
mnb__fit_prior True
mnb__force_alpha True

Model Plot

Pipeline(steps=[('vectorizer',TfidfVectorizer(encoding='latin-1', min_df=5,ngram_range=(1, 2), sublinear_tf=True)),('mnb', MultinomialNB())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

[More Information Needed]

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

get_started_code

import joblib model = joblib.load('pipeline_sentiment_analysis.pkl')

model_card_authors

Rodrigo Rodrigues do Carmo

limitations

This pipeline is for studying purposes only.

model_description

This is a pipeline for sentiment analysis trained on the Stanford Twitter dataset.TF-IDF vectorizer is used for vectorization.