|
--- |
|
library_name: sklearn |
|
license: mit |
|
tags: |
|
- sklearn |
|
- skops |
|
- text-classification |
|
model_format: pickle |
|
model_file: pipeline_sentiment_analysis.pkl |
|
--- |
|
|
|
# Model description |
|
|
|
[More Information Needed] |
|
|
|
## Intended uses & limitations |
|
|
|
[More Information Needed] |
|
|
|
## Training Procedure |
|
|
|
[More Information Needed] |
|
|
|
### Hyperparameters |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|---------------------------|-------------------------| |
|
| memory | | |
|
| steps | [('vectorizer', TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),<br /> sublinear_tf=True)), ('mnb', MultinomialNB())] | |
|
| verbose | False | |
|
| vectorizer | TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),<br /> sublinear_tf=True) | |
|
| mnb | MultinomialNB() | |
|
| vectorizer__analyzer | word | |
|
| vectorizer__binary | False | |
|
| vectorizer__decode_error | strict | |
|
| vectorizer__dtype | <class 'numpy.float64'> | |
|
| vectorizer__encoding | latin-1 | |
|
| vectorizer__input | content | |
|
| vectorizer__lowercase | True | |
|
| vectorizer__max_df | 1.0 | |
|
| vectorizer__max_features | | |
|
| vectorizer__min_df | 5 | |
|
| vectorizer__ngram_range | (1, 2) | |
|
| vectorizer__norm | l2 | |
|
| vectorizer__preprocessor | | |
|
| vectorizer__smooth_idf | True | |
|
| vectorizer__stop_words | | |
|
| vectorizer__strip_accents | | |
|
| vectorizer__sublinear_tf | True | |
|
| vectorizer__token_pattern | (?u)\b\w\w+\b | |
|
| vectorizer__tokenizer | | |
|
| vectorizer__use_idf | True | |
|
| vectorizer__vocabulary | | |
|
| mnb__alpha | 1.0 | |
|
| mnb__class_prior | | |
|
| mnb__fit_prior | True | |
|
| mnb__force_alpha | True | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;} |
|
}#sk-container-id-1 {color: var(--sklearn-color-text); |
|
}#sk-container-id-1 pre {padding: 0; |
|
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px; |
|
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background); |
|
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative; |
|
}#sk-container-id-1 div.sk-text-repr-fallback {display: none; |
|
}div.sk-parallel-item, |
|
div.sk-serial, |
|
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center; |
|
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1; |
|
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative; |
|
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column; |
|
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%; |
|
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%; |
|
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0; |
|
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em; |
|
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is |
|
clickable and can be expanded/collapsed. |
|
- Pipeline and ColumnTransformer use this feature and define the default style |
|
- Estimators will overwrite some part of the style using the `sk-estimator` class |
|
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background); |
|
}/* Toggleable label */ |
|
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center; |
|
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon); |
|
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text); |
|
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0); |
|
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0); |
|
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0); |
|
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0); |
|
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto; |
|
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾"; |
|
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2); |
|
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2); |
|
}/* Estimator-specific style *//* Colorize estimator box */ |
|
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2); |
|
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2); |
|
}#sk-container-id-1 div.sk-label label.sk-toggleable__label, |
|
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background); |
|
}/* On hover, darken the color of the background */ |
|
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2); |
|
}/* Label box, darken color on hover, fitted */ |
|
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2); |
|
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em; |
|
}#sk-container-id-1 div.sk-label-container {text-align: center; |
|
}/* Estimator-specific */ |
|
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0); |
|
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0); |
|
}/* on hover */ |
|
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2); |
|
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2); |
|
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link, |
|
a:link.sk-estimator-doc-link, |
|
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1); |
|
}.sk-estimator-doc-link.fitted, |
|
a:link.sk-estimator-doc-link.fitted, |
|
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1); |
|
}/* On hover */ |
|
div.sk-estimator:hover .sk-estimator-doc-link:hover, |
|
.sk-estimator-doc-link:hover, |
|
div.sk-label-container:hover .sk-estimator-doc-link:hover, |
|
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none; |
|
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover, |
|
.sk-estimator-doc-link.fitted:hover, |
|
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover, |
|
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none; |
|
}/* Span, style for the box shown on hovering the info icon */ |
|
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3); |
|
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3); |
|
}.sk-estimator-doc-link:hover span {display: block; |
|
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid; |
|
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1); |
|
}/* On hover */ |
|
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none; |
|
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3); |
|
} |
|
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('vectorizer',TfidfVectorizer(encoding='latin-1', min_df=5,ngram_range=(1, 2), sublinear_tf=True)),('mnb', MultinomialNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('vectorizer',TfidfVectorizer(encoding='latin-1', min_df=5,ngram_range=(1, 2), sublinear_tf=True)),('mnb', MultinomialNB())])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),sublinear_tf=True)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> MultinomialNB<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.naive_bayes.MultinomialNB.html">?<span>Documentation for MultinomialNB</span></a></label><div class="sk-toggleable__content fitted"><pre>MultinomialNB()</pre></div> </div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
[More Information Needed] |
|
|
|
# How to Get Started with the Model |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |
|
|
|
# get_started_code |
|
|
|
import joblib |
|
model = joblib.load('pipeline_sentiment_analysis.pkl') |
|
|
|
# model_card_authors |
|
|
|
Rodrigo Rodrigues do Carmo |
|
|
|
# limitations |
|
|
|
This pipeline is for studying purposes only. |
|
|
|
# model_description |
|
|
|
This is a pipeline for sentiment analysis trained on the Stanford Twitter dataset.TF-IDF vectorizer is used for vectorization. |
|
|