|
--- |
|
language: |
|
- pt |
|
thumbnail: "Portugues BERT for the Legal Domain" |
|
tags: |
|
- bert |
|
- pytorch |
|
- tsdae |
|
datasets: |
|
- rufimelo/PortugueseLegalSentences-v1 |
|
license: "mit" |
|
widget: |
|
- text: "O advogado apresentou [MASK] ao juíz." |
|
--- |
|
|
|
# Legal_BERTimbau |
|
|
|
## Introduction |
|
|
|
Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. |
|
|
|
"BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. |
|
|
|
For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." |
|
|
|
The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 2e-5, using TSDAE technique) |
|
|
|
|
|
## Available models |
|
|
|
| Model | Arch. | #Layers | #Params | |
|
| ---------------------------------------- | ---------- | ------- | ------- | |
|
|`rufimelo/Legal-BERTimbau-base` |BERT-Base |12 |110M| |
|
| `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") |
|
|
|
model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") |
|
``` |
|
|
|
### Masked language modeling prediction example |
|
|
|
```python |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") |
|
model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") |
|
|
|
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) |
|
pipe('O advogado apresentou [MASK] para o juíz') |
|
# [{'score': 0.5034703612327576, |
|
#'token': 8190, |
|
#'token_str': 'recurso', |
|
#'sequence': 'O advogado apresentou recurso para o juíz'}, |
|
#{'score': 0.07347951829433441, |
|
#'token': 21973, |
|
#'token_str': 'petição', |
|
#'sequence': 'O advogado apresentou petição para o juíz'}, |
|
#{'score': 0.05165359005331993, |
|
#'token': 4299, |
|
#'token_str': 'resposta', |
|
#'sequence': 'O advogado apresentou resposta para o juíz'}, |
|
#{'score': 0.04611917585134506, |
|
#'token': 5265, |
|
#'token_str': 'exposição', |
|
#'sequence': 'O advogado apresentou exposição para o juíz'}, |
|
#{'score': 0.04068068787455559, |
|
#'token': 19737, 'token_str': |
|
#'alegações', |
|
#'sequence': 'O advogado apresentou alegações para o juíz'}] |
|
|
|
``` |
|
|
|
### For BERT embeddings |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModel |
|
|
|
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE') |
|
input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
outs = model(input_ids) |
|
encoded = outs[0][0, 1:-1] |
|
|
|
#tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], |
|
#[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], |
|
#[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], |
|
#..., |
|
#[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], |
|
#[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], |
|
#[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) |
|
``` |
|
|
|
## Citation |
|
|
|
If you use this work, please cite BERTimbau's work: |
|
|
|
```bibtex |
|
@inproceedings{souza2020bertimbau, |
|
author = {F{\'a}bio Souza and |
|
Rodrigo Nogueira and |
|
Roberto Lotufo}, |
|
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, |
|
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, |
|
year = {2020} |
|
} |
|
``` |
|
|