saad7489's picture
End of training
9ce9892 verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad1
    results: []

segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad1

This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1146
  • Mean Iou: 0.8471
  • Mean Accuracy: 0.9142
  • Overall Accuracy: 0.9899
  • Accuracy Bkg: 0.9952
  • Accuracy Knife: 0.8462
  • Accuracy Gun: 0.9012
  • Iou Bkg: 0.9906
  • Iou Knife: 0.7813
  • Iou Gun: 0.7695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bkg Accuracy Knife Accuracy Gun Iou Bkg Iou Knife Iou Gun
0.2793 5.0 20 0.2864 0.8107 0.9046 0.9864 0.9921 0.8291 0.8925 0.9869 0.7282 0.7169
0.2448 10.0 40 0.2176 0.8159 0.9001 0.9871 0.9932 0.8241 0.8829 0.9876 0.7319 0.7284
0.2061 15.0 60 0.1960 0.8225 0.9093 0.9875 0.9930 0.8324 0.9024 0.9881 0.7476 0.7317
0.1731 20.0 80 0.1698 0.8291 0.8991 0.9884 0.9947 0.8120 0.8907 0.9890 0.7555 0.7428
0.1513 25.0 100 0.1435 0.8371 0.8993 0.9891 0.9954 0.8245 0.8780 0.9897 0.7643 0.7574
0.1401 30.0 120 0.1334 0.8400 0.9112 0.9893 0.9947 0.8399 0.8990 0.9899 0.7720 0.7582
0.1359 35.0 140 0.1222 0.8449 0.9050 0.9898 0.9957 0.8335 0.8859 0.9904 0.7753 0.7691
0.1498 40.0 160 0.1196 0.8460 0.9092 0.9898 0.9955 0.8367 0.8955 0.9905 0.7780 0.7696
0.1255 45.0 180 0.1160 0.8475 0.9109 0.9899 0.9955 0.8423 0.8948 0.9906 0.7810 0.7710
0.1247 50.0 200 0.1146 0.8471 0.9142 0.9899 0.9952 0.8462 0.9012 0.9906 0.7813 0.7695

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1