saad7489's picture
End of training
9ce9892 verified
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1146
- Mean Iou: 0.8471
- Mean Accuracy: 0.9142
- Overall Accuracy: 0.9899
- Accuracy Bkg: 0.9952
- Accuracy Knife: 0.8462
- Accuracy Gun: 0.9012
- Iou Bkg: 0.9906
- Iou Knife: 0.7813
- Iou Gun: 0.7695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:|
| 0.2793 | 5.0 | 20 | 0.2864 | 0.8107 | 0.9046 | 0.9864 | 0.9921 | 0.8291 | 0.8925 | 0.9869 | 0.7282 | 0.7169 |
| 0.2448 | 10.0 | 40 | 0.2176 | 0.8159 | 0.9001 | 0.9871 | 0.9932 | 0.8241 | 0.8829 | 0.9876 | 0.7319 | 0.7284 |
| 0.2061 | 15.0 | 60 | 0.1960 | 0.8225 | 0.9093 | 0.9875 | 0.9930 | 0.8324 | 0.9024 | 0.9881 | 0.7476 | 0.7317 |
| 0.1731 | 20.0 | 80 | 0.1698 | 0.8291 | 0.8991 | 0.9884 | 0.9947 | 0.8120 | 0.8907 | 0.9890 | 0.7555 | 0.7428 |
| 0.1513 | 25.0 | 100 | 0.1435 | 0.8371 | 0.8993 | 0.9891 | 0.9954 | 0.8245 | 0.8780 | 0.9897 | 0.7643 | 0.7574 |
| 0.1401 | 30.0 | 120 | 0.1334 | 0.8400 | 0.9112 | 0.9893 | 0.9947 | 0.8399 | 0.8990 | 0.9899 | 0.7720 | 0.7582 |
| 0.1359 | 35.0 | 140 | 0.1222 | 0.8449 | 0.9050 | 0.9898 | 0.9957 | 0.8335 | 0.8859 | 0.9904 | 0.7753 | 0.7691 |
| 0.1498 | 40.0 | 160 | 0.1196 | 0.8460 | 0.9092 | 0.9898 | 0.9955 | 0.8367 | 0.8955 | 0.9905 | 0.7780 | 0.7696 |
| 0.1255 | 45.0 | 180 | 0.1160 | 0.8475 | 0.9109 | 0.9899 | 0.9955 | 0.8423 | 0.8948 | 0.9906 | 0.7810 | 0.7710 |
| 0.1247 | 50.0 | 200 | 0.1146 | 0.8471 | 0.9142 | 0.9899 | 0.9952 | 0.8462 | 0.9012 | 0.9906 | 0.7813 | 0.7695 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1