sakharamg's picture
Uploading all files
158b61b

Translation

This example is for training for the WMT'14 English to German news translation task. It will use on the fly tokenization with sentencepiece and sacrebleu for evaluation.

Step 0: Download the data and prepare the subwords model

Preliminary steps are defined in the examples/scripts/prepare_wmt_data.sh. The following command will download the necessary datasets, and prepare a sentencepiece model:

chmod u+x prepare_wmt_data.sh
./prepare_wmt_data.sh

Note: you should have installed sentencepiece binaries before running this script.

Step 1. Build the vocabulary.

We need to setup the desired configuration with 1. the data 2. the tokenization options:

# wmt14_en_de.yaml
save_data: data/wmt/run/example
## Where the vocab(s) will be written
src_vocab: data/wmt/run/example.vocab.src
tgt_vocab: data/wmt/run/example.vocab.tgt

# Corpus opts:
data:
    commoncrawl:
        path_src: data/wmt/commoncrawl.de-en.en
        path_tgt: data/wmt/commoncrawl.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 23
    europarl:
        path_src: data/wmt/europarl-v7.de-en.en
        path_tgt: data/wmt/europarl-v7.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 19
    news_commentary:
        path_src: data/wmt/news-commentary-v11.de-en.en
        path_tgt: data/wmt/news-commentary-v11.de-en.de
        transforms: [sentencepiece, filtertoolong]
        weight: 3
    valid:
        path_src: data/wmt/valid.en
        path_tgt: data/wmt/valid.de
        transforms: [sentencepiece]

### Transform related opts:
#### Subword
src_subword_model: data/wmt/wmtende.model
tgt_subword_model: data/wmt/wmtende.model
src_subword_nbest: 1
src_subword_alpha: 0.0
tgt_subword_nbest: 1
tgt_subword_alpha: 0.0
#### Filter
src_seq_length: 150
tgt_seq_length: 150

# silently ignore empty lines in the data
skip_empty_level: silent

Then we can execute the vocabulary building script. Let's set -n_sample to -1 to compute the vocabulary over the whole corpora:

onmt_build_vocab -config wmt14_en_de.yaml -n_sample -1

Step 2: Train the model

We need to add the following parameters to the YAML configuration:

...

# General opts
save_model: data/wmt/run/model
keep_checkpoint: 50
save_checkpoint_steps: 5000
average_decay: 0.0005
seed: 1234
report_every: 100
train_steps: 100000
valid_steps: 5000

# Batching
queue_size: 10000
bucket_size: 32768
world_size: 2
gpu_ranks: [0, 1]
batch_type: "tokens"
batch_size: 4096
valid_batch_size: 16
batch_size_multiple: 1
max_generator_batches: 0
accum_count: [3]
accum_steps: [0]

# Optimization
model_dtype: "fp32"
optim: "adam"
learning_rate: 2
warmup_steps: 8000
decay_method: "noam"
adam_beta2: 0.998
max_grad_norm: 0
label_smoothing: 0.1
param_init: 0
param_init_glorot: true
normalization: "tokens"

# Model
encoder_type: transformer
decoder_type: transformer
enc_layers: 6
dec_layers: 6
heads: 8
rnn_size: 512
word_vec_size: 512
transformer_ff: 2048
dropout_steps: [0]
dropout: [0.1]
attention_dropout: [0.1]
share_decoder_embeddings: true
share_embeddings: true

Step 3: Translate and evaluate

We need to tokenize the testset with the same sentencepiece model as used in training:

spm_encode --model=data/wmt/wmtende.model \
    < data/wmt/test.en \
    > data/wmt/test.en.sp
spm_encode --model=data/wmt/wmtende.model \
    < data/wmt/test.de \
    > data/wmt/test.de.sp

We can translate the testset with the following command:

for checkpoint in data/wmt/run/model_step*.pt; do
    echo "# Translating with checkpoint $checkpoint"
    base=$(basename $checkpoint)
    onmt_translate \
        -gpu 0 \
        -batch_size 16384 -batch_type tokens \
        -beam_size 5 \
        -model $checkpoint \
        -src data/wmt/test.en.sp \
        -tgt data/wmt/test.de.sp \
        -output data/wmt/test.de.hyp_${base%.*}.sp
done

Prior to evaluation, we need to detokenize the hypothesis:

for checkpoint in data/wmt/run/model_step*.pt; do
    base=$(basename $checkpoint)
    spm_decode \
        -model=data/wmt/wmtende.model \
        -input_format=piece \
        < data/wmt/test.de.hyp_${base%.*}.sp \
        > data/wmt/test.de.hyp_${base%.*}
done

Finally, we can compute detokenized BLEU with sacrebleu:

for checkpoint in data/wmt/run/model_step*.pt; do
    echo "$checkpoint"
    base=$(basename $checkpoint)
    sacrebleu data/wmt/test.de < data/wmt/test.de.hyp_${base%.*}
done