sanash43's picture
Add BERTopic model
63ac5ac verified
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# dssg_topicmodel_500000
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("sanash43/dssg_topicmodel_500000")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 49
* Number of training documents: 500000
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| 0 | the - of - to - and - in | 444110 | 0_the_of_to_and |
| 1 | university - college - student - passed - permit | 31380 | 1_university_college_student_passed |
| 2 | 001 - 000 - xxxxxxxxxxxx - on9998 - 8703 | 10678 | 2_001_000_xxxxxxxxxxxx_on9998 |
| 3 | ergocentric - inc - or - services - 1231 | 3124 | 3_ergocentric_inc_or_services |
| 4 | regular - force - labrador - newfoundland - commercial | 1590 | 4_regular_force_labrador_newfoundland |
| 5 | seeding - hail - storm - radar - weather | 1228 | 5_seeding_hail_storm_radar |
| 6 | 000000 - rental - 42012e12 - 5000 - 2170 | 926 | 6_000000_rental_42012e12_5000 |
| 7 | hearing - loss - tinnitus - noise - ear | 796 | 7_hearing_loss_tinnitus_noise |
| 8 | the - and - of - in - you | 684 | 8_the_and_of_in |
| 9 | traduction - documents - parl - mots - tr03 | 534 | 9_traduction_documents_parl_mots |
| 10 | mci - 24 - 1943 - 23 - inst | 517 | 10_mci_24_1943_23 |
| 11 | cbsa - lasfc - dasile - demandeurs - total | 467 | 11_cbsa_lasfc_dasile_demandeurs |
| 12 | wwater - burlington - laboratory - eclabbur - testing | 424 | 12_wwater_burlington_laboratory_eclabbur |
| 13 | epoll - ou - doffres - elector - 10162 | 306 | 13_epoll_ou_doffres_elector |
| 14 | heritage - sussex - the - residence - building | 249 | 14_heritage_sussex_the_residence |
| 15 | greenough - daycare - wellington - consulting - october | 239 | 15_greenough_daycare_wellington_consulting |
| 16 | tage - floor - rue - confirmed - dorchester | 228 | 16_tage_floor_rue_confirmed |
| 17 | jeunes - youth - we - de - les | 216 | 17_jeunes_youth_we_de |
| 18 | bnp - hartals - violence - the - that | 211 | 18_bnp_hartals_violence_the |
| 19 | 10aig - i0aig - 10aic - ioaig - i0aic | 187 | 19_10aig_i0aig_10aic_ioaig |
| 20 | complaints - files - case - rdims - vs | 173 | 20_complaints_files_case_rdims |
| 21 | mckinsey - formatted - font - publishingemail - page | 165 | 21_mckinsey_formatted_font_publishingemail |
| 22 | cerb - english - french - xxxxxxxxxxxx - rdprm | 151 | 22_cerb_english_french_xxxxxxxxxxxx |
| 23 | aeroplane - pilot - complete - private - passed | 132 | 23_aeroplane_pilot_complete_private |
| 24 | blue - bridge - delay - water - edt | 130 | 24_blue_bridge_delay_water |
| 25 | dymista - nasal - fluticasone - propionate - spray | 123 | 25_dymista_nasal_fluticasone_propionate |
| 26 | individual - wh - pied - dd - tob | 113 | 26_individual_wh_pied_dd |
| 27 | holman - financial - 19971101 - services - ar | 80 | 27_holman_financial_19971101_services |
| 28 | pch - anthem - c210 - senator - bill | 77 | 28_pch_anthem_c210_senator |
| 29 | 6299 - r300 - assigned - liabilities - 21111 | 72 | 29_6299_r300_assigned_liabilities |
| 30 | cad - registered - 000 - eur - 19112015 | 71 | 30_cad_registered_000_eur |
| 31 | original - single - age - months - commercial | 70 | 31_original_single_age_months |
| 32 | biden - trump - votes - wshdc - election | 57 | 32_biden_trump_votes_wshdc |
| 33 | link - bellletstalk - mental - farmers - thefirstsixteen | 54 | 33_link_bellletstalk_mental_farmers |
| 34 | visits - average - daily - busiest - active | 44 | 34_visits_average_daily_busiest |
| 35 | de - laroport - dorval - mirabel - et | 41 | 35_de_laroport_dorval_mirabel |
| 36 | undefined - null - owning - created - status | 40 | 36_undefined_null_owning_created |
| 37 | 20190101 - treasurer - 20191231 - pastor - member | 39 | 37_20190101_treasurer_20191231_pastor |
| 38 | 1000040908 - protak - consulting - cad - cleared | 37 | 38_1000040908_protak_consulting_cad |
| 39 | parental - z5 - 75 - maternity - zq | 27 | 39_parental_z5_75_maternity |
| 40 | propane - per - cost - cents - bushel | 26 | 40_propane_per_cost_cents |
| 41 | male - haiti - female - minor - colombia | 26 | 41_male_haiti_female_minor |
| 42 | tsnrc - tsmrc - sda - standard - option | 25 | 42_tsnrc_tsmrc_sda_standard |
| 43 | stakeholders - 10072019 - 0000 - delegation - accredited | 25 | 43_stakeholders_10072019_0000_delegation |
| 44 | meop - eoms - multilateral - observation - eom | 25 | 44_meop_eoms_multilateral_observation |
| 45 | de - cuves - la - des - anodes | 22 | 45_de_cuves_la_des |
| 46 | destroyed - goods - importer - customs - rh | 22 | 46_destroyed_goods_importer_customs |
| 47 | pa - mexico - passed - female - male | 21 | 47_pa_mexico_passed_female |
| 48 | linda - cheverie - giulia - transcripts - command | 18 | 48_linda_cheverie_giulia_transcripts |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: 50
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.38.post1
* UMAP: 0.5.6
* Pandas: 2.2.1
* Scikit-Learn: 1.4.0
* Sentence-transformers: 3.0.1
* Transformers: 4.43.4
* Numba: 0.60.0
* Plotly: 5.23.0
* Python: 3.9.19