sasakipeter's picture
Add Usage
0a9ad2f verified
|
raw
history blame
3.95 kB
---
license: cc-by-nc-sa-4.0
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
---
# Fine-tuned Japanese Instruction Model
This is a fine-tuned version of the base model **[llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)** using the **ichikara-instruction** dataset.
The model has been fine-tuned for **Japanese instruction-following tasks**.
---
## Model Information
### **Base Model**
- **Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)
- **Architecture**: Causal Language Model
- **Parameters**: 13 billion
### **Fine-tuning Dataset**
- **Dataset**: [ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/)
- **Authors**: 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎
- **License**: [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
The dataset includes Japanese instruction-response pairs and has been tailored for Japanese **instruction-following tasks**.
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
---
## Usage
1. Install Required Libraries
```
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
```
2. Load the Model and Libraries
```
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
# Hugging Face Token (recommended to set via environment variable)
HF_TOKEN = "YOUR_HF_ACCESS_TOKEN"
# Model and adapter IDs
base_model_id = "llm-jp/llm-jp-3-13b" # Base model
adapter_id = "sasakipeter/llm-jp-3-13b-finetune"
# QLoRA (4-bit quantization) configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
```
3. Load the Base Model and LoRA Adapter
```
# Load base model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto",
token=HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
trust_remote_code=True,
token=HF_TOKEN
)
# Integrate LoRA adapter into the base model
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)
```
4. Perform Inference
```
# Example input prompt
input_text = """次の文章を要約してください。
日本は四季があり、春には桜が咲き、夏には暑さが続きます。秋には紅葉が美しく、冬には雪が降ります。"""
# Format the input prompt
prompt = f"""### 指示
{input_text}
### 回答
"""
# Tokenize input and move to the model's device
tokenized_input = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate output
with torch.no_grad():
outputs = model.generate(
**tokenized_input,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)
# Decode the output
output = tokenizer.decode(outputs[0][tokenized_input.input_ids.size(1):], skip_special_tokens=True)
print("Output:")
print(output)
```
---
## License
This model is released under the **CC-BY-NC-SA 4.0** license.
- **Base Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) (Apache License 2.0)
- **Fine-Tuning Dataset**: ichikara-instruction (CC-BY-NC-SA 4.0)
**Fine-tuned Model License**:
Due to the Share-Alike (SA) condition of the ichikara-instruction dataset, the fine-tuned model is licensed under **CC-BY-NC-SA 4.0**.
This means the model can only be used for **non-commercial purposes**, and any derivative works must adopt the same license.