sasakipeter's picture
update inference example
6bd9ea8 verified
|
raw
history blame
4.76 kB
---
license: cc-by-nc-sa-4.0
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
---
# Fine-tuned Japanese Instruction Model
This is a fine-tuned version of the base model **[llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)** using the **ichikara-instruction** dataset.
The model has been fine-tuned for **Japanese instruction-following tasks**.
---
## Model Information
### **Base Model**
- **Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b)
- **Architecture**: Causal Language Model
- **Parameters**: 13 billion
### **Fine-tuning Dataset**
- **Dataset**: [ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/)
- **Authors**: 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎
- **License**: [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
The dataset includes Japanese instruction-response pairs and has been tailored for Japanese **instruction-following tasks**.
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
---
## Usage
### 1. Install Required Libraries
```python
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
```
### 2. Load the Model and Libraries
```python
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
import re
# Hugging Face Token (recommended to set via environment variable)
HF_TOKEN = "YOUR_HF_ACCESS_TOKEN"
# Model and adapter IDs
# base_model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
base_model_id = "llm-jp/llm-jp-3-13b" # Base model
adapter_id = "sasakipeter/llm-jp-3-13b-finetune"
# QLoRA (4-bit quantization) configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
```
### 3. Load the Base Model and LoRA Adapter
```python
# Load base model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto",
token=HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
trust_remote_code=True,
token=HF_TOKEN
)
# Integrate LoRA adapter into the base model
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)
model.config.use_cache = False
```
### 4. Perform Inference on `[elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)`
```python
# loading dataset
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# execute inference
results = []
for data in tqdm(datasets):
input_text = data["input"]
prompt = f"""### 指示
{input_text}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
jsonl_id = re.sub(".*/", "", new_model_id)
with open(f"./{jsonl_id}-outputs-validation.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
```
---
## License
This model is released under the **CC-BY-NC-SA 4.0** license.
- **Base Model**: [llm-jp/llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) (Apache License 2.0)
- **Fine-Tuning Dataset**: ichikara-instruction (CC-BY-NC-SA 4.0)
**Fine-tuned Model License**:
Due to the Share-Alike (SA) condition of the ichikara-instruction dataset, the fine-tuned model is licensed under **CC-BY-NC-SA 4.0**.
This means the model can only be used for **non-commercial purposes**, and any derivative works must adopt the same license.