|
--- |
|
base_model: microsoft/Phi-3-mini-4k-instruct |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: hf_llama3_lora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/hmosousa/huggingface/runs/d375v2e7) |
|
# hf_llama3_lora |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2972 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 5 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 640 |
|
- total_eval_batch_size: 20 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.4042 | 0.1862 | 500 | 1.3990 | |
|
| 1.3445 | 0.3723 | 1000 | 1.3608 | |
|
| 1.291 | 0.5585 | 1500 | 1.3493 | |
|
| 1.264 | 0.7446 | 2000 | 1.3381 | |
|
| 1.2438 | 0.9308 | 2500 | 1.3257 | |
|
| 1.2333 | 1.1169 | 3000 | 1.3242 | |
|
| 1.2084 | 1.3031 | 3500 | 1.3167 | |
|
| 1.2227 | 1.4892 | 4000 | 1.3178 | |
|
| 1.2151 | 1.6754 | 4500 | 1.3092 | |
|
| 1.2114 | 1.8615 | 5000 | 1.3060 | |
|
| 1.1645 | 2.0477 | 5500 | 1.3068 | |
|
| 1.1793 | 2.2338 | 6000 | 1.3026 | |
|
| 1.1809 | 2.4200 | 6500 | 1.3014 | |
|
| 1.1934 | 2.6061 | 7000 | 1.2935 | |
|
| 1.175 | 2.7923 | 7500 | 1.2953 | |
|
| 1.1629 | 2.9784 | 8000 | 1.2954 | |
|
| 1.1559 | 3.1646 | 8500 | 1.2972 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.43.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |