sbottazziunsam's picture
update model card README.md
f52d2e6
|
raw
history blame
4.69 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - f1
model-index:
  - name: 11-classifier-finetuned-padchest
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.5097608873456089

11-classifier-finetuned-padchest

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1743
  • F1: 0.5098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1
2.0747 1.0 18 2.0666 0.1549
2.0661 2.0 36 2.0560 0.1777
2.0497 3.0 54 2.0385 0.2169
2.018 4.0 72 2.0047 0.2515
1.9792 5.0 90 1.9773 0.2329
1.9619 6.0 108 1.9421 0.2321
1.9186 7.0 126 1.9145 0.2055
1.8838 8.0 144 1.8976 0.2596
1.8402 9.0 162 1.8444 0.2337
1.7906 10.0 180 1.7951 0.2397
1.7716 11.0 198 1.7695 0.3373
1.7474 12.0 216 1.7940 0.3209
1.6957 13.0 234 1.7425 0.3314
1.6791 14.0 252 1.6727 0.3558
1.6483 15.0 270 1.6638 0.3895
1.614 16.0 288 1.6513 0.4186
1.6166 17.0 306 1.6002 0.4406
1.5654 18.0 324 1.5528 0.4627
1.5145 19.0 342 1.5571 0.4676
1.5049 20.0 360 1.4334 0.4364
1.457 21.0 378 1.4711 0.4535
1.4516 22.0 396 1.5013 0.4516
1.4172 23.0 414 1.3614 0.4682
1.3817 24.0 432 1.3519 0.4545
1.3987 25.0 450 1.3806 0.4759
1.4063 26.0 468 1.2961 0.4866
1.3684 27.0 486 1.3328 0.4768
1.3789 28.0 504 1.2810 0.4859
1.341 29.0 522 1.3227 0.4737
1.3574 30.0 540 1.2406 0.5025
1.357 31.0 558 1.2427 0.5033
1.3204 32.0 576 1.2478 0.5053
1.3122 33.0 594 1.2205 0.5133
1.334 34.0 612 1.2138 0.5204
1.2998 35.0 630 1.2122 0.5111
1.3097 36.0 648 1.2118 0.5102
1.2956 37.0 666 1.2077 0.5163
1.3058 38.0 684 1.2023 0.5157
1.2851 39.0 702 1.1968 0.5067
1.2728 40.0 720 1.1940 0.5169
1.2653 41.0 738 1.1700 0.5165
1.2837 42.0 756 1.1767 0.5262
1.2789 43.0 774 1.1885 0.5146
1.2343 44.0 792 1.1925 0.5101
1.2454 45.0 810 1.1874 0.5119
1.2922 46.0 828 1.1845 0.5216
1.2547 47.0 846 1.1920 0.5299
1.272 48.0 864 1.1732 0.5225
1.2506 49.0 882 1.1722 0.5117
1.2494 50.0 900 1.1743 0.5098

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.13.3