LED-Large-NSPCC / README.md
scott156's picture
End of training
fa49620 verified
|
raw
history blame
2 kB
---
license: apache-2.0
base_model: allenai/led-large-16384
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: LED-Large-NSPCC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LED-Large-NSPCC
This model is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7268
- Rouge1: 0.5254
- Rouge2: 0.2338
- Rougel: 0.3002
- Rougelsum: 0.3002
- Gen Len: 299.4787
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 2.4641 | 0.9947 | 94 | 2.1400 | 0.4307 | 0.1505 | 0.226 | 0.226 | 353.6277 |
| 1.8933 | 2.0 | 189 | 1.8349 | 0.4851 | 0.1895 | 0.2638 | 0.2641 | 275.5745 |
| 1.3745 | 2.9947 | 283 | 1.6659 | 0.516 | 0.2274 | 0.2882 | 0.2887 | 299.5426 |
| 0.8719 | 3.9788 | 376 | 1.7268 | 0.5254 | 0.2338 | 0.3002 | 0.3002 | 299.4787 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1