library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCVI
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- annotated:False
ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying latent space, integrate technical batches and impute dropouts. The learned low-dimensional latent representation of the data can be used for visualization and clustering.
scVI takes as input a scRNA-seq gene expression matrix with cells and genes. We provide an extensive user guide.
- See our original manuscript for further details of the model: scVI manuscript.
- See our manuscript on scvi-hub how to leverage pre-trained models.
This model can be used for fine tuning on new data using our Arches framework: Arches tutorial.
Model Description
scVI model trained on synthetic IID data and uploaded with the minified data.
Model Properties
We provide here key parameters used to setup and train the model.
Training data url: N/A
Model Parameters
These provide the settings to setup the original model:
{
"n_hidden": 128,
"n_latent": 10,
"n_layers": 1,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "zinb",
"latent_distribution": "normal"
}
Setup Data Arguments
Arguments passed to setup_anndata of the original model: ```json { "layer": null, "batch_key": null, "labels_key": null, "size_factor_key": null, "categorical_covariate_keys": null, "continuous_covariate_keys": null } ```Data Registry
Registry elements for AnnData manager: | Registry Key | scvi-tools Location | |-------------------|--------------------------------------| | X | adata.X | | batch | adata.obs['_scvi_batch'] | | labels | adata.obs['_scvi_labels'] | | latent_qzm | adata.obsm['latent_qzm'] | | latent_qzv | adata.obsm['latent_qzv'] | | minify_type | adata.uns['_scvi_adata_minify_type'] | | observed_lib_size | adata.obs['observed_lib_size'] |- Data is Minified: True
Summary Statistics
| Summary Stat Key | Value | |--------------------------|-------| | n_batch | 1 | | n_cells | 400 | | n_extra_categorical_covs | 0 | | n_extra_continuous_covs | 0 | | n_labels | 1 | | n_latent_qzm | 10 | | n_latent_qzv | 10 | | n_vars | 100 |Training
If provided by the original uploader, for those interested in understanding or replicating the training process, the code is available at the link below.
Training Code URL: N/A
References
To be added...