File size: 11,185 Bytes
8c5c9d3 ee43310 db446b7 8c5c9d3 ad3695b 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 f2c6a2d 8c5c9d3 ee43310 dfd5c40 9af3e83 8c5c9d3 ee43310 dfd5c40 6b12fe9 dfd5c40 ee43310 dfd5c40 ee43310 dfd5c40 ecf15f8 dfd5c40 f2c6a2d 6b12fe9 f2c6a2d 6b12fe9 f2c6a2d 6b12fe9 f2c6a2d 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 dfd5c40 8c5c9d3 ee43310 8c5c9d3 ee43310 63d0dd3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 63d0dd3 8c5c9d3 e899270 ad3695b db446b7 ad3695b e899270 ee43310 8c5c9d3 ee43310 8c5c9d3 e899270 8c5c9d3 ee43310 8c5c9d3 ee43310 e899270 ee43310 8c5c9d3 e899270 ee43310 8c5c9d3 e899270 ee43310 e899270 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 ee43310 8c5c9d3 806a44b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
---
library_name: transformers
tags:
- cybersecurity
- mpnet
- classification
- fine-tuned
license: creativeml-openrail-m
language:
- en
base_model:
- sentence-transformers/all-mpnet-base-v2
---
# AttackGroup-MPNET - Model Card for MPNet Cybersecurity Classifier
This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.
## Model Details
### Model Description
This model is a fine-tuned MPNet classifier specialized in categorizing cybersecurity threat groups based on textual descriptions of their tactics, techniques, and procedures (TTPs).
- **Developed by:** Dženan Hamzić
- **Model type:** Transformer-based classification model (MPNet)
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** microsoft/mpnet-base (with intermediate MLM fine-tuning)
### Model Sources
- **Base Model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base)
## Uses
### Direct Use
This model classifies textual cybersecurity descriptions into known cybersecurity threat groups.
### Downstream Use
Integration into Cyber Threat Intelligence platforms, SOC incident analysis tools, and automated threat detection systems.
### Out-of-Scope Use
- General language tasks unrelated to cybersecurity
- Tasks outside the cybersecurity domain
## Bias, Risks, and Limitations
This model specializes in cybersecurity contexts. Predictions for unrelated contexts may be inaccurate.
### Recommendations
Always verify predictions with cybersecurity analysts before using in critical decision-making scenarios.
## How to Get Started with the Model (Classification)
```python
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.optim as optim
import numpy as np
from huggingface_hub import hf_hub_download
import json
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
label_to_groupid_file = hf_hub_download(
repo_id="selfconstruct3d/AttackGroup-MPNET",
filename="label_to_groupid.json"
)
with open(label_to_groupid_file, "r") as f:
label_to_groupid = json.load(f)
# Load explicitly your fine-tuned MPNet model
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET", num_labels=len(label_to_groupid)).to(device)
# Load explicitly your tokenizer
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
def predict_group(sentence):
classifier_model.eval()
encoding = tokenizer(
sentence,
truncation=True,
padding="max_length",
max_length=128,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
predicted_label = torch.argmax(logits, dim=1).cpu().item()
predicted_groupid = label_to_groupid[str(predicted_label)]
return predicted_groupid
# Example usage explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")
```
Predicted GroupID: G0001
https://attack.mitre.org/groups/G0001/
## How to Get Started with the Model (Embeddings)
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import json
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
label_to_groupid_file = hf_hub_download(
repo_id="selfconstruct3d/AttackGroup-MPNET",
filename="label_to_groupid.json"
)
with open(label_to_groupid_file, "r") as f:
label_to_groupid = json.load(f)
# Load your fine-tuned classification model
model_name = "selfconstruct3d/AttackGroup-MPNET"
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(label_to_groupid)).to(device)
def get_embedding(sentence):
classifier_model.eval()
encoding = tokenizer(
sentence,
truncation=True,
padding="max_length",
max_length=128,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = classifier_model.mpnet(input_ids=input_ids, attention_mask=attention_mask)
cls_embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy().flatten()
return cls_embedding
# Example explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
embedding = get_embedding(sentence)
print("Embedding shape:", embedding.shape)
print("Embedding values:", embedding)
```
## Training Details
### Training Data
To be anounced...
### Training Procedure
- Fine-tuned from: MLM fine-tuned MPNet ("mpnet_mlm_cyber_finetuned-v2")
- Epochs: 32
- Learning rate: 5e-6
- Batch size: 16
## Evaluation
### Testing Data, Factors & Metrics
- **Testing Data:** Stratified sample from original dataset.
- **Metrics:** Accuracy, Weighted F1 Score
### Results
| Metric | Value |
|------------------------|---------|
| Cl. Accuracy (Test) | 0.9564 |
| W. F1 Score (Test) | 0.9577 |
## Evaluation Results
| Model | Accuracy | F1 Macro | F1 Weighted | Embedding Variability |
|-----------------------|----------|----------|-------------|-----------------------|
| **AttackGroup-MPNET** | **0.85** | **0.759**| **0.847** | 0.234 |
| GTE Large | 0.66 | 0.571 | 0.667 | 0.266 |
| E5 Large v2 | 0.64 | 0.541 | 0.650 | 0.355 |
| Original MPNet | 0.63 | 0.534 | 0.619 | 0.092 |
| BGE Large | 0.53 | 0.418 | 0.519 | 0.366 |
| SupSimCSE | 0.50 | 0.373 | 0.479 | 0.227 |
| MLM Fine-tuned MPNet | 0.44 | 0.272 | 0.411 | 0.125 |
| SecBERT | 0.41 | 0.315 | 0.410 | 0.591 |
| SecureBERT_Plus | 0.36 | 0.252 | 0.349 | 0.267 |
| CySecBERT | 0.34 | 0.235 | 0.323 | 0.229 |
| ATTACK-BERT | 0.33 | 0.240 | 0.316 | 0.096 |
| Secure_BERT | 0.00 | 0.000 | 0.000 | 0.007 |
| CyBERT | 0.00 | 0.000 | 0.000 | 0.015 |
| Model | Similarity Search Recall@5 | Few-shot Accuracy | In-dist Similarity | OOD Similarity | Robustness Similarity |
|----------------------|----------------------------|-------------------|--------------------|----------------|-----------------------|
| **AttackGroup-MPNET**| **0.934** | **0.857** | 0.235 | 0.017 | 0.948 |
| Original MPNet | 0.786 | 0.643 | 0.217 | -0.004 | 0.941 |
| E5 Large v2 | 0.778 | 0.679 | 0.727 | 0.013 | 0.977 |
| GTE Large | 0.746 | 0.786 | 0.845 | 0.002 | 0.984 |
| BGE Large | 0.632 | 0.750 | 0.533 | -0.006 | 0.970 |
| SupSimCSE | 0.616 | 0.571 | 0.683 | -0.015 | 0.978 |
| SecBERT | 0.468 | 0.429 | 0.586 | -0.001 | 0.970 |
| CyBERT | 0.452 | 0.250 | 1.000 | -0.001 | 1.000 |
| ATTACK-BERT | 0.362 | 0.571 | 0.157 | -0.005 | 0.950 |
| CySecBERT | 0.424 | 0.500 | 0.734 | -0.015 | 0.954 |
| Secure_BERT | 0.424 | 0.250 | 0.990 | 0.050 | 0.998 |
| SecureBERT_Plus | 0.406 | 0.464 | 0.981 | 0.040 | 0.998 |
### Single Prediction Example
```python
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.optim as optim
import numpy as np
from huggingface_hub import hf_hub_download
import json
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load explicitly your fine-tuned MPNet model
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)
# Load explicitly your tokenizer
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")
label_to_groupid_file = hf_hub_download(
repo_id="selfconstruct3d/AttackGroup-MPNET",
filename="label_to_groupid.json"
)
with open(label_to_groupid_file, "r") as f:
label_to_groupid = json.load(f)
def predict_group(sentence):
classifier_model.eval()
encoding = tokenizer(
sentence,
truncation=True,
padding="max_length",
max_length=128,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
predicted_label = torch.argmax(logits, dim=1).cpu().item()
predicted_groupid = label_to_groupid[str(predicted_label)]
return predicted_groupid
# Example usage explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")
```
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
- **Hardware Type:** [To be filled by user]
- **Hours used:** [To be filled by user]
- **Cloud Provider:** [To be filled by user]
- **Compute Region:** [To be filled by user]
- **Carbon Emitted:** [To be filled by user]
## Technical Specifications
### Model Architecture
- MPNet architecture with classification head (768 -> 512 -> num_labels)
- Last 10 transformer layers fine-tuned explicitly
## Environmental Impact
Carbon emissions should be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
## Model Card Authors
- Dženan Hamzić
## Model Card Contact
- https://www.linkedin.com/in/dzenan-hamzic/ |