|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/swin-large-patch4-window7-224-in22k |
|
datasets: |
|
- medmnist-v2 |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: breastmnist-swin-base-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# breastmnist-swin-base-finetuned |
|
|
|
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3595 |
|
- Accuracy: 0.8526 |
|
- Precision: 0.8162 |
|
- Recall: 0.8014 |
|
- F1: 0.8082 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 0.9143 | 8 | 0.5069 | 0.7436 | 0.8701 | 0.5238 | 0.4708 | |
|
| 0.6976 | 1.9429 | 17 | 0.4591 | 0.8590 | 0.8190 | 0.8283 | 0.8234 | |
|
| 0.5351 | 2.9714 | 26 | 0.3745 | 0.8846 | 0.8667 | 0.8308 | 0.8462 | |
|
| 0.4998 | 4.0 | 35 | 0.3243 | 0.8974 | 0.8697 | 0.8697 | 0.8697 | |
|
| 0.4569 | 4.9143 | 43 | 0.4070 | 0.8590 | 0.8306 | 0.7982 | 0.8120 | |
|
| 0.4182 | 5.9429 | 52 | 0.3801 | 0.8718 | 0.8439 | 0.8221 | 0.8319 | |
|
| 0.4432 | 6.9714 | 61 | 0.3071 | 0.8718 | 0.8371 | 0.8371 | 0.8371 | |
|
| 0.3988 | 8.0 | 70 | 0.3205 | 0.8718 | 0.8332 | 0.8521 | 0.8417 | |
|
| 0.3988 | 8.9143 | 78 | 0.3239 | 0.8846 | 0.8506 | 0.8609 | 0.8555 | |
|
| 0.3993 | 9.1429 | 80 | 0.3214 | 0.8846 | 0.8506 | 0.8609 | 0.8555 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |