You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

vit-colon-cancer-classification

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6794
  • Accuracy: 0.8210

Model description

  • Fine tuned vision transformer for classification of colon cancer.
  • Four classes: Normal Tissue, Serrated Lesion, Adenoma, Adenocarcinoma

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8993 0.35 100 0.6462 0.7341
0.6042 0.71 200 0.6380 0.7432
0.6284 1.06 300 0.5628 0.7821
0.5494 1.42 400 0.5643 0.7788
0.5218 1.77 500 0.5478 0.7970
0.5053 2.13 600 0.5356 0.7846
0.4441 2.48 700 0.6928 0.7133
0.4492 2.84 800 0.4898 0.8078
0.429 3.19 900 0.5166 0.8020
0.3474 3.55 1000 0.5373 0.8061
0.337 3.9 1100 0.5442 0.7904
0.3243 4.26 1200 0.5171 0.8111
0.3003 4.61 1300 0.5463 0.8070
0.3127 4.96 1400 0.5122 0.8202
0.2587 5.32 1500 0.5807 0.8152
0.2434 5.67 1600 0.5392 0.8219
0.1996 6.03 1700 0.6343 0.8045
0.2033 6.38 1800 0.5855 0.8128
0.2056 6.74 1900 0.6516 0.8144
0.1927 7.09 2000 0.5770 0.8227
0.1688 7.45 2100 0.6153 0.8293
0.1566 7.8 2200 0.5994 0.8268
0.1406 8.16 2300 0.6192 0.8277
0.1381 8.51 2400 0.6334 0.8202
0.12 8.87 2500 0.6444 0.8136
0.104 9.22 2600 0.6709 0.8202
0.1049 9.57 2700 0.6752 0.8227
0.1349 9.93 2800 0.6980 0.8186
0.0846 10.28 2900 0.6794 0.8210

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for selvaa/vit-colon-cancer-classification

Finetuned
(539)
this model

Evaluation results