metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-colon-cancer-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8210439105219552
pipeline_tag: image-classification
vit-colon-cancer-classification
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6794
- Accuracy: 0.8210
Model description
- Fine tuned vision transformer for classification of colon cancer.
- Four classes: Normal Tissue, Serrated Lesion, Adenoma, Adenocarcinoma
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8993 | 0.35 | 100 | 0.6462 | 0.7341 |
0.6042 | 0.71 | 200 | 0.6380 | 0.7432 |
0.6284 | 1.06 | 300 | 0.5628 | 0.7821 |
0.5494 | 1.42 | 400 | 0.5643 | 0.7788 |
0.5218 | 1.77 | 500 | 0.5478 | 0.7970 |
0.5053 | 2.13 | 600 | 0.5356 | 0.7846 |
0.4441 | 2.48 | 700 | 0.6928 | 0.7133 |
0.4492 | 2.84 | 800 | 0.4898 | 0.8078 |
0.429 | 3.19 | 900 | 0.5166 | 0.8020 |
0.3474 | 3.55 | 1000 | 0.5373 | 0.8061 |
0.337 | 3.9 | 1100 | 0.5442 | 0.7904 |
0.3243 | 4.26 | 1200 | 0.5171 | 0.8111 |
0.3003 | 4.61 | 1300 | 0.5463 | 0.8070 |
0.3127 | 4.96 | 1400 | 0.5122 | 0.8202 |
0.2587 | 5.32 | 1500 | 0.5807 | 0.8152 |
0.2434 | 5.67 | 1600 | 0.5392 | 0.8219 |
0.1996 | 6.03 | 1700 | 0.6343 | 0.8045 |
0.2033 | 6.38 | 1800 | 0.5855 | 0.8128 |
0.2056 | 6.74 | 1900 | 0.6516 | 0.8144 |
0.1927 | 7.09 | 2000 | 0.5770 | 0.8227 |
0.1688 | 7.45 | 2100 | 0.6153 | 0.8293 |
0.1566 | 7.8 | 2200 | 0.5994 | 0.8268 |
0.1406 | 8.16 | 2300 | 0.6192 | 0.8277 |
0.1381 | 8.51 | 2400 | 0.6334 | 0.8202 |
0.12 | 8.87 | 2500 | 0.6444 | 0.8136 |
0.104 | 9.22 | 2600 | 0.6709 | 0.8202 |
0.1049 | 9.57 | 2700 | 0.6752 | 0.8227 |
0.1349 | 9.93 | 2800 | 0.6980 | 0.8186 |
0.0846 | 10.28 | 2900 | 0.6794 | 0.8210 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.15.0