sentence-t5-base / README.md
Muennighoff's picture
Add MTEB
81c83ad
|
raw
history blame
103 kB
metadata
pipeline_tag: sentence-similarity
language: en
license: apache-2.0
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - mteb
model-index:
  - name: sentence-t5-base
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 75.82089552238807
          - type: ap
            value: 40.58809426967639
          - type: f1
            value: 70.5050115572668
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 69.97858672376874
          - type: ap
            value: 80.89622545806847
          - type: f1
            value: 68.09770164363411
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
        metrics:
          - type: accuracy
            value: 76.80659670164917
          - type: ap
            value: 26.663544686227127
          - type: f1
            value: 64.52406535274052
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 46.04925053533191
          - type: ap
            value: 10.574096802771448
          - type: f1
            value: 36.74441737116304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 85.11737500000001
          - type: ap
            value: 81.28435308927632
          - type: f1
            value: 85.01612484917347
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 44.943999999999996
          - type: f1
            value: 42.681783855948844
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 37.895999999999994
          - type: f1
            value: 35.428429230946115
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 37.328
          - type: f1
            value: 34.26335456752553
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 37.35
          - type: f1
            value: 34.644931974230495
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 22.290000000000003
          - type: f1
            value: 20.438677904046305
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
        metrics:
          - type: accuracy
            value: 21.529999999999998
          - type: f1
            value: 18.273004097867844
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 21.906
          - type: map_at_10
            value: 35.993
          - type: map_at_100
            value: 37.14
          - type: map_at_1000
            value: 37.153999999999996
          - type: map_at_3
            value: 30.642000000000003
          - type: map_at_5
            value: 33.534000000000006
          - type: ndcg_at_1
            value: 21.906
          - type: ndcg_at_10
            value: 44.846000000000004
          - type: ndcg_at_100
            value: 49.95
          - type: ndcg_at_1000
            value: 50.29
          - type: ndcg_at_3
            value: 33.579
          - type: ndcg_at_5
            value: 38.807
          - type: precision_at_1
            value: 21.906
          - type: precision_at_10
            value: 7.367999999999999
          - type: precision_at_100
            value: 0.966
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.035
          - type: precision_at_5
            value: 10.967
          - type: recall_at_1
            value: 21.906
          - type: recall_at_10
            value: 73.68400000000001
          - type: recall_at_100
            value: 96.586
          - type: recall_at_1000
            value: 99.14699999999999
          - type: recall_at_3
            value: 42.105
          - type: recall_at_5
            value: 54.836
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 39.27529166223639
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 27.261128959373327
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 59.72875661091822
          - type: mrr
            value: 72.76997317856043
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 75.50587493517146
          - type: cos_sim_spearman
            value: 75.89088585182279
          - type: euclidean_pearson
            value: 75.74627833999679
          - type: euclidean_spearman
            value: 75.89088585182279
          - type: manhattan_pearson
            value: 76.10746255262428
          - type: manhattan_spearman
            value: 75.93968214440233
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 76.47727272727273
          - type: f1
            value: 75.41900393828456
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 33.98533095653499
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 22.921149832439514
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 27.97
          - type: map_at_10
            value: 39.523
          - type: map_at_100
            value: 41.101
          - type: map_at_1000
            value: 41.221000000000004
          - type: map_at_3
            value: 36.193999999999996
          - type: map_at_5
            value: 37.952000000000005
          - type: ndcg_at_1
            value: 34.621
          - type: ndcg_at_10
            value: 46.18
          - type: ndcg_at_100
            value: 51.93600000000001
          - type: ndcg_at_1000
            value: 53.833
          - type: ndcg_at_3
            value: 41.091
          - type: ndcg_at_5
            value: 43.230000000000004
          - type: precision_at_1
            value: 34.621
          - type: precision_at_10
            value: 9.041
          - type: precision_at_100
            value: 1.525
          - type: precision_at_1000
            value: 0.19499999999999998
          - type: precision_at_3
            value: 20.029
          - type: precision_at_5
            value: 14.335
          - type: recall_at_1
            value: 27.97
          - type: recall_at_10
            value: 59.325
          - type: recall_at_100
            value: 82.917
          - type: recall_at_1000
            value: 95.175
          - type: recall_at_3
            value: 44.251000000000005
          - type: recall_at_5
            value: 50.383
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.701
          - type: map_at_10
            value: 32.094
          - type: map_at_100
            value: 33.293
          - type: map_at_1000
            value: 33.434999999999995
          - type: map_at_3
            value: 29.609999999999996
          - type: map_at_5
            value: 31.16
          - type: ndcg_at_1
            value: 30.573
          - type: ndcg_at_10
            value: 37.031
          - type: ndcg_at_100
            value: 42.001
          - type: ndcg_at_1000
            value: 44.714
          - type: ndcg_at_3
            value: 33.434999999999995
          - type: ndcg_at_5
            value: 35.356
          - type: precision_at_1
            value: 30.573
          - type: precision_at_10
            value: 6.854
          - type: precision_at_100
            value: 1.192
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 16.178
          - type: precision_at_5
            value: 11.567
          - type: recall_at_1
            value: 23.701
          - type: recall_at_10
            value: 45.755
          - type: recall_at_100
            value: 67.035
          - type: recall_at_1000
            value: 84.893
          - type: recall_at_3
            value: 34.977999999999994
          - type: recall_at_5
            value: 40.357
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 35.617
          - type: map_at_10
            value: 47.774
          - type: map_at_100
            value: 48.943999999999996
          - type: map_at_1000
            value: 49.007
          - type: map_at_3
            value: 44.214999999999996
          - type: map_at_5
            value: 46.291
          - type: ndcg_at_1
            value: 40.627
          - type: ndcg_at_10
            value: 53.952
          - type: ndcg_at_100
            value: 58.55200000000001
          - type: ndcg_at_1000
            value: 59.824
          - type: ndcg_at_3
            value: 47.911
          - type: ndcg_at_5
            value: 50.966
          - type: precision_at_1
            value: 40.627
          - type: precision_at_10
            value: 8.884
          - type: precision_at_100
            value: 1.213
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 21.337999999999997
          - type: precision_at_5
            value: 15.034
          - type: recall_at_1
            value: 35.617
          - type: recall_at_10
            value: 68.73599999999999
          - type: recall_at_100
            value: 88.42999999999999
          - type: recall_at_1000
            value: 97.455
          - type: recall_at_3
            value: 52.915
          - type: recall_at_5
            value: 60.182
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 21.029999999999998
          - type: map_at_10
            value: 27.915
          - type: map_at_100
            value: 28.924
          - type: map_at_1000
            value: 29.023
          - type: map_at_3
            value: 25.634
          - type: map_at_5
            value: 26.934
          - type: ndcg_at_1
            value: 22.599
          - type: ndcg_at_10
            value: 32.340999999999994
          - type: ndcg_at_100
            value: 37.422
          - type: ndcg_at_1000
            value: 40.014
          - type: ndcg_at_3
            value: 27.604
          - type: ndcg_at_5
            value: 29.872
          - type: precision_at_1
            value: 22.599
          - type: precision_at_10
            value: 5.051
          - type: precision_at_100
            value: 0.799
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 11.562999999999999
          - type: precision_at_5
            value: 8.225999999999999
          - type: recall_at_1
            value: 21.029999999999998
          - type: recall_at_10
            value: 44.226
          - type: recall_at_100
            value: 67.902
          - type: recall_at_1000
            value: 87.497
          - type: recall_at_3
            value: 31.389
          - type: recall_at_5
            value: 36.888
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 12.592
          - type: map_at_10
            value: 20.054
          - type: map_at_100
            value: 21.384
          - type: map_at_1000
            value: 21.52
          - type: map_at_3
            value: 17.718999999999998
          - type: map_at_5
            value: 19.189999999999998
          - type: ndcg_at_1
            value: 15.299
          - type: ndcg_at_10
            value: 24.698
          - type: ndcg_at_100
            value: 31.080000000000002
          - type: ndcg_at_1000
            value: 34.266000000000005
          - type: ndcg_at_3
            value: 20.331
          - type: ndcg_at_5
            value: 22.735
          - type: precision_at_1
            value: 15.299
          - type: precision_at_10
            value: 4.776
          - type: precision_at_100
            value: 0.928
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 10.033
          - type: precision_at_5
            value: 7.761
          - type: recall_at_1
            value: 12.592
          - type: recall_at_10
            value: 35.386
          - type: recall_at_100
            value: 63.412
          - type: recall_at_1000
            value: 86.20400000000001
          - type: recall_at_3
            value: 23.768
          - type: recall_at_5
            value: 29.557
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.549
          - type: map_at_10
            value: 32.875
          - type: map_at_100
            value: 34.247
          - type: map_at_1000
            value: 34.374
          - type: map_at_3
            value: 29.774
          - type: map_at_5
            value: 31.535000000000004
          - type: ndcg_at_1
            value: 28.874
          - type: ndcg_at_10
            value: 38.801
          - type: ndcg_at_100
            value: 44.727
          - type: ndcg_at_1000
            value: 47.154
          - type: ndcg_at_3
            value: 33.643
          - type: ndcg_at_5
            value: 36.046
          - type: precision_at_1
            value: 28.874
          - type: precision_at_10
            value: 7.305000000000001
          - type: precision_at_100
            value: 1.21
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 16.009
          - type: precision_at_5
            value: 11.741999999999999
          - type: recall_at_1
            value: 23.549
          - type: recall_at_10
            value: 51.15
          - type: recall_at_100
            value: 76.32900000000001
          - type: recall_at_1000
            value: 92.167
          - type: recall_at_3
            value: 36.544
          - type: recall_at_5
            value: 42.75
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 24.524
          - type: map_at_10
            value: 34.288999999999994
          - type: map_at_100
            value: 35.67
          - type: map_at_1000
            value: 35.788
          - type: map_at_3
            value: 31.029
          - type: map_at_5
            value: 32.767
          - type: ndcg_at_1
            value: 29.794999999999998
          - type: ndcg_at_10
            value: 40.164
          - type: ndcg_at_100
            value: 46.278999999999996
          - type: ndcg_at_1000
            value: 48.698
          - type: ndcg_at_3
            value: 34.648
          - type: ndcg_at_5
            value: 36.982
          - type: precision_at_1
            value: 29.794999999999998
          - type: precision_at_10
            value: 7.580000000000001
          - type: precision_at_100
            value: 1.248
          - type: precision_at_1000
            value: 0.165
          - type: precision_at_3
            value: 16.628999999999998
          - type: precision_at_5
            value: 12.055
          - type: recall_at_1
            value: 24.524
          - type: recall_at_10
            value: 52.782
          - type: recall_at_100
            value: 79.108
          - type: recall_at_1000
            value: 95.62899999999999
          - type: recall_at_3
            value: 37.330999999999996
          - type: recall_at_5
            value: 43.502
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 21.669083333333333
          - type: map_at_10
            value: 30.095166666666668
          - type: map_at_100
            value: 31.35275
          - type: map_at_1000
            value: 31.476166666666668
          - type: map_at_3
            value: 27.41675
          - type: map_at_5
            value: 28.91216666666667
          - type: ndcg_at_1
            value: 25.666833333333333
          - type: ndcg_at_10
            value: 35.23175
          - type: ndcg_at_100
            value: 40.822833333333335
          - type: ndcg_at_1000
            value: 43.33783333333334
          - type: ndcg_at_3
            value: 30.516333333333336
          - type: ndcg_at_5
            value: 32.723
          - type: precision_at_1
            value: 25.666833333333333
          - type: precision_at_10
            value: 6.345583333333332
          - type: precision_at_100
            value: 1.0886666666666667
          - type: precision_at_1000
            value: 0.14974999999999997
          - type: precision_at_3
            value: 14.185583333333335
          - type: precision_at_5
            value: 10.265333333333334
          - type: recall_at_1
            value: 21.669083333333333
          - type: recall_at_10
            value: 46.69591666666667
          - type: recall_at_100
            value: 71.36999999999999
          - type: recall_at_1000
            value: 88.98216666666666
          - type: recall_at_3
            value: 33.59675
          - type: recall_at_5
            value: 39.2065
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 18.587999999999997
          - type: map_at_10
            value: 25.452
          - type: map_at_100
            value: 26.296999999999997
          - type: map_at_1000
            value: 26.394000000000002
          - type: map_at_3
            value: 23.474
          - type: map_at_5
            value: 24.629
          - type: ndcg_at_1
            value: 21.012
          - type: ndcg_at_10
            value: 29.369
          - type: ndcg_at_100
            value: 33.782000000000004
          - type: ndcg_at_1000
            value: 36.406
          - type: ndcg_at_3
            value: 25.45
          - type: ndcg_at_5
            value: 27.384999999999998
          - type: precision_at_1
            value: 21.012
          - type: precision_at_10
            value: 4.723999999999999
          - type: precision_at_100
            value: 0.753
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 11.094
          - type: precision_at_5
            value: 7.914000000000001
          - type: recall_at_1
            value: 18.587999999999997
          - type: recall_at_10
            value: 39.413
          - type: recall_at_100
            value: 59.78
          - type: recall_at_1000
            value: 79.49199999999999
          - type: recall_at_3
            value: 28.485
          - type: recall_at_5
            value: 33.367999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 12.76
          - type: map_at_10
            value: 18.859
          - type: map_at_100
            value: 19.865
          - type: map_at_1000
            value: 19.994
          - type: map_at_3
            value: 16.817
          - type: map_at_5
            value: 17.837
          - type: ndcg_at_1
            value: 15.415999999999999
          - type: ndcg_at_10
            value: 23.037
          - type: ndcg_at_100
            value: 28.164
          - type: ndcg_at_1000
            value: 31.404
          - type: ndcg_at_3
            value: 19.134999999999998
          - type: ndcg_at_5
            value: 20.711
          - type: precision_at_1
            value: 15.415999999999999
          - type: precision_at_10
            value: 4.387
          - type: precision_at_100
            value: 0.826
          - type: precision_at_1000
            value: 0.127
          - type: precision_at_3
            value: 9.257
          - type: precision_at_5
            value: 6.696000000000001
          - type: recall_at_1
            value: 12.76
          - type: recall_at_10
            value: 32.657000000000004
          - type: recall_at_100
            value: 56.023
          - type: recall_at_1000
            value: 79.572
          - type: recall_at_3
            value: 21.608
          - type: recall_at_5
            value: 25.726
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 22.415
          - type: map_at_10
            value: 29.957
          - type: map_at_100
            value: 31.234
          - type: map_at_1000
            value: 31.351000000000003
          - type: map_at_3
            value: 27.261999999999997
          - type: map_at_5
            value: 28.708
          - type: ndcg_at_1
            value: 26.118999999999996
          - type: ndcg_at_10
            value: 34.961999999999996
          - type: ndcg_at_100
            value: 40.876000000000005
          - type: ndcg_at_1000
            value: 43.586000000000006
          - type: ndcg_at_3
            value: 29.958000000000002
          - type: ndcg_at_5
            value: 32.228
          - type: precision_at_1
            value: 26.118999999999996
          - type: precision_at_10
            value: 6.053999999999999
          - type: precision_at_100
            value: 1.012
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 13.65
          - type: precision_at_5
            value: 9.795
          - type: recall_at_1
            value: 22.415
          - type: recall_at_10
            value: 46.339000000000006
          - type: recall_at_100
            value: 72.30799999999999
          - type: recall_at_1000
            value: 91.448
          - type: recall_at_3
            value: 32.673
          - type: recall_at_5
            value: 38.467
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 21.624
          - type: map_at_10
            value: 30
          - type: map_at_100
            value: 31.776
          - type: map_at_1000
            value: 32.005
          - type: map_at_3
            value: 27.314
          - type: map_at_5
            value: 28.741
          - type: ndcg_at_1
            value: 25.691999999999997
          - type: ndcg_at_10
            value: 35.64
          - type: ndcg_at_100
            value: 42.488
          - type: ndcg_at_1000
            value: 44.978
          - type: ndcg_at_3
            value: 31.147000000000002
          - type: ndcg_at_5
            value: 33.241
          - type: precision_at_1
            value: 25.691999999999997
          - type: precision_at_10
            value: 7.0360000000000005
          - type: precision_at_100
            value: 1.547
          - type: precision_at_1000
            value: 0.244
          - type: precision_at_3
            value: 15.02
          - type: precision_at_5
            value: 11.146
          - type: recall_at_1
            value: 21.624
          - type: recall_at_10
            value: 46.415
          - type: recall_at_100
            value: 77.086
          - type: recall_at_1000
            value: 92.72500000000001
          - type: recall_at_3
            value: 33.911
          - type: recall_at_5
            value: 39.116
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 15.659
          - type: map_at_10
            value: 22.35
          - type: map_at_100
            value: 23.498
          - type: map_at_1000
            value: 23.602
          - type: map_at_3
            value: 19.959
          - type: map_at_5
            value: 21.201999999999998
          - type: ndcg_at_1
            value: 17.375
          - type: ndcg_at_10
            value: 26.606
          - type: ndcg_at_100
            value: 32.567
          - type: ndcg_at_1000
            value: 35.177
          - type: ndcg_at_3
            value: 21.843
          - type: ndcg_at_5
            value: 23.924
          - type: precision_at_1
            value: 17.375
          - type: precision_at_10
            value: 4.455
          - type: precision_at_100
            value: 0.8109999999999999
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 9.427000000000001
          - type: precision_at_5
            value: 6.912999999999999
          - type: recall_at_1
            value: 15.659
          - type: recall_at_10
            value: 38.167
          - type: recall_at_100
            value: 66.11
          - type: recall_at_1000
            value: 85.529
          - type: recall_at_3
            value: 25.308000000000003
          - type: recall_at_5
            value: 30.182
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 3.9469999999999996
          - type: map_at_10
            value: 6.816999999999999
          - type: map_at_100
            value: 7.7170000000000005
          - type: map_at_1000
            value: 7.887
          - type: map_at_3
            value: 5.6739999999999995
          - type: map_at_5
            value: 6.243
          - type: ndcg_at_1
            value: 8.73
          - type: ndcg_at_10
            value: 10.366999999999999
          - type: ndcg_at_100
            value: 15.343000000000002
          - type: ndcg_at_1000
            value: 19.535
          - type: ndcg_at_3
            value: 7.976
          - type: ndcg_at_5
            value: 8.786
          - type: precision_at_1
            value: 8.73
          - type: precision_at_10
            value: 3.3160000000000003
          - type: precision_at_100
            value: 0.857
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 5.776
          - type: precision_at_5
            value: 4.534
          - type: recall_at_1
            value: 3.9469999999999996
          - type: recall_at_10
            value: 13.385
          - type: recall_at_100
            value: 31.612000000000002
          - type: recall_at_1000
            value: 56.252
          - type: recall_at_3
            value: 7.686
          - type: recall_at_5
            value: 9.879
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 5.75
          - type: map_at_10
            value: 11.632000000000001
          - type: map_at_100
            value: 16.400000000000002
          - type: map_at_1000
            value: 17.580000000000002
          - type: map_at_3
            value: 8.49
          - type: map_at_5
            value: 9.626999999999999
          - type: ndcg_at_1
            value: 35.75
          - type: ndcg_at_10
            value: 27.766000000000002
          - type: ndcg_at_100
            value: 31.424000000000003
          - type: ndcg_at_1000
            value: 38.998
          - type: ndcg_at_3
            value: 30.807000000000002
          - type: ndcg_at_5
            value: 28.62
          - type: precision_at_1
            value: 44.25
          - type: precision_at_10
            value: 22.625
          - type: precision_at_100
            value: 7.163
          - type: precision_at_1000
            value: 1.619
          - type: precision_at_3
            value: 33.75
          - type: precision_at_5
            value: 28.199999999999996
          - type: recall_at_1
            value: 5.75
          - type: recall_at_10
            value: 16.918
          - type: recall_at_100
            value: 37.645
          - type: recall_at_1000
            value: 62.197
          - type: recall_at_3
            value: 9.721
          - type: recall_at_5
            value: 11.974
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 51.355000000000004
          - type: f1
            value: 44.27505726378252
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 13.81
          - type: map_at_10
            value: 21.567
          - type: map_at_100
            value: 22.461000000000002
          - type: map_at_1000
            value: 22.545
          - type: map_at_3
            value: 19.282
          - type: map_at_5
            value: 20.535999999999998
          - type: ndcg_at_1
            value: 15.032
          - type: ndcg_at_10
            value: 26.165
          - type: ndcg_at_100
            value: 30.819999999999997
          - type: ndcg_at_1000
            value: 33.209
          - type: ndcg_at_3
            value: 21.488
          - type: ndcg_at_5
            value: 23.721999999999998
          - type: precision_at_1
            value: 15.032
          - type: precision_at_10
            value: 4.292
          - type: precision_at_100
            value: 0.6779999999999999
          - type: precision_at_1000
            value: 0.09
          - type: precision_at_3
            value: 9.551
          - type: precision_at_5
            value: 6.927999999999999
          - type: recall_at_1
            value: 13.81
          - type: recall_at_10
            value: 39.009
          - type: recall_at_100
            value: 60.99400000000001
          - type: recall_at_1000
            value: 79.703
          - type: recall_at_3
            value: 26.221
          - type: recall_at_5
            value: 31.604
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 16.55
          - type: map_at_10
            value: 27.101
          - type: map_at_100
            value: 28.941
          - type: map_at_1000
            value: 29.137
          - type: map_at_3
            value: 22.926
          - type: map_at_5
            value: 25.217
          - type: ndcg_at_1
            value: 33.951
          - type: ndcg_at_10
            value: 34.832
          - type: ndcg_at_100
            value: 41.989
          - type: ndcg_at_1000
            value: 45.262
          - type: ndcg_at_3
            value: 30.427
          - type: ndcg_at_5
            value: 31.985999999999997
          - type: precision_at_1
            value: 33.951
          - type: precision_at_10
            value: 10.139
          - type: precision_at_100
            value: 1.735
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_3
            value: 20.576
          - type: precision_at_5
            value: 15.556000000000001
          - type: recall_at_1
            value: 16.55
          - type: recall_at_10
            value: 42.153
          - type: recall_at_100
            value: 69.19999999999999
          - type: recall_at_1000
            value: 88.631
          - type: recall_at_3
            value: 27.071
          - type: recall_at_5
            value: 33.432
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 18.102999999999998
          - type: map_at_10
            value: 26.006
          - type: map_at_100
            value: 27.060000000000002
          - type: map_at_1000
            value: 27.173000000000002
          - type: map_at_3
            value: 23.815
          - type: map_at_5
            value: 24.978
          - type: ndcg_at_1
            value: 36.205
          - type: ndcg_at_10
            value: 33.198
          - type: ndcg_at_100
            value: 37.836999999999996
          - type: ndcg_at_1000
            value: 40.499
          - type: ndcg_at_3
            value: 29.108
          - type: ndcg_at_5
            value: 30.993
          - type: precision_at_1
            value: 36.205
          - type: precision_at_10
            value: 7.404
          - type: precision_at_100
            value: 1.109
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 18.479
          - type: precision_at_5
            value: 12.581000000000001
          - type: recall_at_1
            value: 18.102999999999998
          - type: recall_at_10
            value: 37.022
          - type: recall_at_100
            value: 55.449000000000005
          - type: recall_at_1000
            value: 73.214
          - type: recall_at_3
            value: 27.717999999999996
          - type: recall_at_5
            value: 31.452
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 77.3372
          - type: ap
            value: 71.64946791935137
          - type: f1
            value: 77.13428403424751
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
        metrics:
          - type: map_at_1
            value: 9.093
          - type: map_at_10
            value: 16.227
          - type: map_at_100
            value: 17.477999999999998
          - type: map_at_1000
            value: 17.579
          - type: map_at_3
            value: 13.541
          - type: map_at_5
            value: 14.921000000000001
          - type: ndcg_at_1
            value: 9.370000000000001
          - type: ndcg_at_10
            value: 20.705000000000002
          - type: ndcg_at_100
            value: 27.331
          - type: ndcg_at_1000
            value: 30.104
          - type: ndcg_at_3
            value: 15.081
          - type: ndcg_at_5
            value: 17.551
          - type: precision_at_1
            value: 9.370000000000001
          - type: precision_at_10
            value: 3.633
          - type: precision_at_100
            value: 0.7040000000000001
          - type: precision_at_1000
            value: 0.094
          - type: precision_at_3
            value: 6.648
          - type: precision_at_5
            value: 5.241
          - type: recall_at_1
            value: 9.093
          - type: recall_at_10
            value: 34.777
          - type: recall_at_100
            value: 66.673
          - type: recall_at_1000
            value: 88.44999999999999
          - type: recall_at_3
            value: 19.194
          - type: recall_at_5
            value: 25.124999999999996
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 90.3374373005016
          - type: f1
            value: 90.25497662319412
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 76.98224852071004
          - type: f1
            value: 75.10443724253962
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 73.60907271514343
          - type: f1
            value: 73.15530983235772
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 75.02975258377701
          - type: f1
            value: 75.53083321964739
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 21.40193617784152
          - type: f1
            value: 15.465217146460256
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 16.206148282097647
          - type: f1
            value: 11.580229602870345
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 63.32421340629275
          - type: f1
            value: 45.42341063027956
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 44.426599041983664
          - type: f1
            value: 27.205947872504428
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 42.02801867911942
          - type: f1
            value: 26.314909946795733
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 43.845912934544316
          - type: f1
            value: 29.519701972859792
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 3.80064539261384
          - type: f1
            value: 1.2078686392462628
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 5.207956600361665
          - type: f1
            value: 1.5365513001536746
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
        metrics:
          - type: accuracy
            value: 34.32078009414929
          - type: f1
            value: 31.969428974847435
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
        metrics:
          - type: accuracy
            value: 2.3772696704774714
          - type: f1
            value: 1.027013290806954
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
        metrics:
          - type: accuracy
            value: 4.53261600537996
          - type: f1
            value: 2.793131265571347
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
        metrics:
          - type: accuracy
            value: 31.758574310692673
          - type: f1
            value: 30.162299253522708
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
        metrics:
          - type: accuracy
            value: 2.5823806321452594
          - type: f1
            value: 1.0918434877949255
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
        metrics:
          - type: accuracy
            value: 28.94418291862811
          - type: f1
            value: 27.498874158049468
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
        metrics:
          - type: accuracy
            value: 38.81977135171486
          - type: f1
            value: 36.44688565156101
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 45.22864828513786
          - type: f1
            value: 41.61460113481098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
        metrics:
          - type: accuracy
            value: 10.053799596503026
          - type: f1
            value: 5.1615743271775285
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 69.74445191661063
          - type: f1
            value: 67.00099408297854
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 45.31943510423672
          - type: f1
            value: 43.92469151179908
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
        metrics:
          - type: accuracy
            value: 3.5810356422326834
          - type: f1
            value: 0.8057464198110936
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
        metrics:
          - type: accuracy
            value: 33.52387357094821
          - type: f1
            value: 30.686159550520415
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 51.13315400134499
          - type: f1
            value: 48.84533274433444
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
        metrics:
          - type: accuracy
            value: 2.632817753866846
          - type: f1
            value: 0.7565304035292157
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 2.6798924008069935
          - type: f1
            value: 1.5577100383199163
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
        metrics:
          - type: accuracy
            value: 32.306657700067255
          - type: f1
            value: 29.508334412971788
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
        metrics:
          - type: accuracy
            value: 3.3254875588433084
          - type: f1
            value: 0.9498561670625558
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
        metrics:
          - type: accuracy
            value: 35.497646267652996
          - type: f1
            value: 32.919473578262014
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
        metrics:
          - type: accuracy
            value: 29.818426361802285
          - type: f1
            value: 27.968522255792134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
        metrics:
          - type: accuracy
            value: 45.585070611970416
          - type: f1
            value: 43.85609178763681
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 3.6718224613315398
          - type: f1
            value: 1.5834733153849028
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
        metrics:
          - type: accuracy
            value: 31.149966375252188
          - type: f1
            value: 28.77156087445068
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
        metrics:
          - type: accuracy
            value: 2.767316745124411
          - type: f1
            value: 1.0163373847923576
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
        metrics:
          - type: accuracy
            value: 5.655682582380632
          - type: f1
            value: 1.6046205246119
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
        metrics:
          - type: accuracy
            value: 2.5924680564895763
          - type: f1
            value: 1.3338404330308657
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
        metrics:
          - type: accuracy
            value: 2.3436449226630804
          - type: f1
            value: 0.5935093070394912
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
        metrics:
          - type: accuracy
            value: 33.97108271687962
          - type: f1
            value: 33.35695453571926
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
        metrics:
          - type: accuracy
            value: 2.5453934095494284
          - type: f1
            value: 0.5515796181696971
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
        metrics:
          - type: accuracy
            value: 14.704102219233356
          - type: f1
            value: 12.444230806799856
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
        metrics:
          - type: accuracy
            value: 33.12037659717552
          - type: f1
            value: 29.867258908899636
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
        metrics:
          - type: accuracy
            value: 4.421654337592468
          - type: f1
            value: 1.3125497683444283
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
        metrics:
          - type: accuracy
            value: 38.53059852051109
          - type: f1
            value: 35.473185172465996
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
        metrics:
          - type: accuracy
            value: 37.96234028244788
          - type: f1
            value: 34.24786837723274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
        metrics:
          - type: accuracy
            value: 34.40820443846672
          - type: f1
            value: 32.06121218840769
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
        metrics:
          - type: accuracy
            value: 43.35238735709483
          - type: f1
            value: 41.66578945324342
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
        metrics:
          - type: accuracy
            value: 42.68997982515131
          - type: f1
            value: 40.12799296163562
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
        metrics:
          - type: accuracy
            value: 14.815063887020846
          - type: f1
            value: 14.113147395663178
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
        metrics:
          - type: accuracy
            value: 34.54270342972428
          - type: f1
            value: 32.556771565845736
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
        metrics:
          - type: accuracy
            value: 38.54068594485541
          - type: f1
            value: 34.63112962341627
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
        metrics:
          - type: accuracy
            value: 35.978480161398785
          - type: f1
            value: 32.896757123025
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
        metrics:
          - type: accuracy
            value: 32.135171486213856
          - type: f1
            value: 30.338211408536065
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
        metrics:
          - type: accuracy
            value: 1.4055144586415602
          - type: f1
            value: 0.4241059307791662
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
        metrics:
          - type: accuracy
            value: 2.501681237390719
          - type: f1
            value: 0.9247691466655827
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 3.7088096839273708
          - type: f1
            value: 1.7117159563540418
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
        metrics:
          - type: accuracy
            value: 36.04236718224613
          - type: f1
            value: 31.848270154788448
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
        metrics:
          - type: accuracy
            value: 33.765971755211844
          - type: f1
            value: 31.25189279882076
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
        metrics:
          - type: accuracy
            value: 2.992602555480834
          - type: f1
            value: 1.6243709826215067
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
        metrics:
          - type: accuracy
            value: 22.61936785474109
          - type: f1
            value: 20.616493213131037
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
        metrics:
          - type: accuracy
            value: 1.1163416274377942
          - type: f1
            value: 0.17708079483587733
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
        metrics:
          - type: accuracy
            value: 4.6267652992602555
          - type: f1
            value: 1.8933559386335084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
        metrics:
          - type: accuracy
            value: 44.45191661062542
          - type: f1
            value: 40.78791900409084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
        metrics:
          - type: accuracy
            value: 7.508406186953598
          - type: f1
            value: 2.821623266241915
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
        metrics:
          - type: accuracy
            value: 12.323470073974445
          - type: f1
            value: 7.033060282091267
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
        metrics:
          - type: accuracy
            value: 38.40954942837929
          - type: f1
            value: 35.118197115254915
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
        metrics:
          - type: accuracy
            value: 8.453261600537996
          - type: f1
            value: 3.7954675930409887
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
        metrics:
          - type: accuracy
            value: 35.036987222595826
          - type: f1
            value: 32.66245000430742
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
        metrics:
          - type: accuracy
            value: 48.35911230665769
          - type: f1
            value: 45.007102253202646
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 59.11903160726294
          - type: f1
            value: 56.29359157547811
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
        metrics:
          - type: accuracy
            value: 17.679892400806995
          - type: f1
            value: 12.298039805650598
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 72.32347007397445
          - type: f1
            value: 71.44743919882103
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 55.61197041022192
          - type: f1
            value: 53.34238608745496
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
        metrics:
          - type: accuracy
            value: 6.859448554135844
          - type: f1
            value: 2.6611096235427603
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
        metrics:
          - type: accuracy
            value: 41.34162743779422
          - type: f1
            value: 37.16587245902462
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 59.91930060524545
          - type: f1
            value: 58.82978451275059
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
        metrics:
          - type: accuracy
            value: 7.864828513786147
          - type: f1
            value: 2.1478868713724184
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 7.6328177538668465
          - type: f1
            value: 4.359158983520571
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
        metrics:
          - type: accuracy
            value: 41.31136516476127
          - type: f1
            value: 37.56187834379295
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
        metrics:
          - type: accuracy
            value: 9.226630800268998
          - type: f1
            value: 4.272151036150232
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
        metrics:
          - type: accuracy
            value: 44.64357767316745
          - type: f1
            value: 42.836643630228295
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
        metrics:
          - type: accuracy
            value: 39.633490248823136
          - type: f1
            value: 35.97498169100485
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
        metrics:
          - type: accuracy
            value: 54.57969065232011
          - type: f1
            value: 51.96887024053593
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 4.956287827841291
          - type: f1
            value: 2.885322950712636
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
        metrics:
          - type: accuracy
            value: 40.73301950235374
          - type: f1
            value: 37.77421393601645
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
        metrics:
          - type: accuracy
            value: 7.505043712172157
          - type: f1
            value: 2.885798319215117
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
        metrics:
          - type: accuracy
            value: 8.732347007397442
          - type: f1
            value: 3.3227736931128002
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
        metrics:
          - type: accuracy
            value: 7.985877605917954
          - type: f1
            value: 4.454873367911008
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
        metrics:
          - type: accuracy
            value: 6.028917283120376
          - type: f1
            value: 2.1947301613241064
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
        metrics:
          - type: accuracy
            value: 36.415601882985875
          - type: f1
            value: 34.328528362740194
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
        metrics:
          - type: accuracy
            value: 6.960322797579018
          - type: f1
            value: 2.5948923502086636
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
        metrics:
          - type: accuracy
            value: 19.84868863483524
          - type: f1
            value: 16.571872313821913
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
        metrics:
          - type: accuracy
            value: 43.18090114324143
          - type: f1
            value: 39.21386548691514
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
        metrics:
          - type: accuracy
            value: 9.462004034969738
          - type: f1
            value: 4.439617481980993
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
        metrics:
          - type: accuracy
            value: 46.60390047074647
          - type: f1
            value: 42.97761990856311
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
        metrics:
          - type: accuracy
            value: 50.00336247478143
          - type: f1
            value: 45.623347729802326
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
        metrics:
          - type: accuracy
            value: 42.29993275050437
          - type: f1
            value: 39.93988660787354
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
        metrics:
          - type: accuracy
            value: 52.23940820443846
          - type: f1
            value: 50.63740128715899
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
        metrics:
          - type: accuracy
            value: 53.69535978480161
          - type: f1
            value: 51.48099264354228
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
        metrics:
          - type: accuracy
            value: 20.68594485541358
          - type: f1
            value: 19.732532357173614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
        metrics:
          - type: accuracy
            value: 39.788164088769335
          - type: f1
            value: 37.63884763800779
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
        metrics:
          - type: accuracy
            value: 50.164761264290526
          - type: f1
            value: 46.40832635120166
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
        metrics:
          - type: accuracy
            value: 46.68796234028245
          - type: f1
            value: 42.65714705554807
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
        metrics:
          - type: accuracy
            value: 40.480833893745796
          - type: f1
            value: 37.28728896543833
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
        metrics:
          - type: accuracy
            value: 7.474781439139207
          - type: f1
            value: 2.114620869965788
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
        metrics:
          - type: accuracy
            value: 6.866173503698722
          - type: f1
            value: 3.0078405064872755
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 8.258238063214526
          - type: f1
            value: 4.082391072869187
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
        metrics:
          - type: accuracy
            value: 48.93745796906523
          - type: f1
            value: 46.427786382184266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
        metrics:
          - type: accuracy
            value: 41.82918628110289
          - type: f1
            value: 40.642360044818325
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
        metrics:
          - type: accuracy
            value: 9.767989240080698
          - type: f1
            value: 4.6812848634278925
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
        metrics:
          - type: accuracy
            value: 30.013449899125753
          - type: f1
            value: 28.091947569862718
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
        metrics:
          - type: accuracy
            value: 4.169468728984533
          - type: f1
            value: 0.8211582847545612
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
        metrics:
          - type: accuracy
            value: 7.908540685944855
          - type: f1
            value: 3.5358754800289534
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 33.20164128507875
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 26.13067187536383
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
        metrics:
          - type: map
            value: 30.196798710053223
          - type: mrr
            value: 31.098179519159814
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 4.7010000000000005
          - type: map_at_10
            value: 9.756
          - type: map_at_100
            value: 12.631999999999998
          - type: map_at_1000
            value: 14.046
          - type: map_at_3
            value: 7.053
          - type: map_at_5
            value: 8.244
          - type: ndcg_at_1
            value: 35.604
          - type: ndcg_at_10
            value: 28.645
          - type: ndcg_at_100
            value: 27.431
          - type: ndcg_at_1000
            value: 36.378
          - type: ndcg_at_3
            value: 32.533
          - type: ndcg_at_5
            value: 30.737
          - type: precision_at_1
            value: 37.771
          - type: precision_at_10
            value: 21.517
          - type: precision_at_100
            value: 7.567
          - type: precision_at_1000
            value: 2.026
          - type: precision_at_3
            value: 30.753000000000004
          - type: precision_at_5
            value: 26.811
          - type: recall_at_1
            value: 4.7010000000000005
          - type: recall_at_10
            value: 14.302999999999999
          - type: recall_at_100
            value: 29.304000000000002
          - type: recall_at_1000
            value: 62.202999999999996
          - type: recall_at_3
            value: 8.419
          - type: recall_at_5
            value: 10.656
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 17.444000000000003
          - type: map_at_10
            value: 29.198
          - type: map_at_100
            value: 30.553
          - type: map_at_1000
            value: 30.614
          - type: map_at_3
            value: 24.992
          - type: map_at_5
            value: 27.322999999999997
          - type: ndcg_at_1
            value: 19.641000000000002
          - type: ndcg_at_10
            value: 36.324
          - type: ndcg_at_100
            value: 42.641
          - type: ndcg_at_1000
            value: 44.089
          - type: ndcg_at_3
            value: 28.000000000000004
          - type: ndcg_at_5
            value: 32.025
          - type: precision_at_1
            value: 19.641000000000002
          - type: precision_at_10
            value: 6.6339999999999995
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 13.209999999999999
          - type: precision_at_5
            value: 10.162
          - type: recall_at_1
            value: 17.444000000000003
          - type: recall_at_10
            value: 56.230999999999995
          - type: recall_at_100
            value: 84.61800000000001
          - type: recall_at_1000
            value: 95.416
          - type: recall_at_3
            value: 34.245999999999995
          - type: recall_at_5
            value: 43.617
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 67.604
          - type: map_at_10
            value: 81.364
          - type: map_at_100
            value: 82.092
          - type: map_at_1000
            value: 82.112
          - type: map_at_3
            value: 78.321
          - type: map_at_5
            value: 80.203
          - type: ndcg_at_1
            value: 77.92
          - type: ndcg_at_10
            value: 85.491
          - type: ndcg_at_100
            value: 87.102
          - type: ndcg_at_1000
            value: 87.246
          - type: ndcg_at_3
            value: 82.219
          - type: ndcg_at_5
            value: 83.991
          - type: precision_at_1
            value: 77.92
          - type: precision_at_10
            value: 13.065
          - type: precision_at_100
            value: 1.525
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 35.96
          - type: precision_at_5
            value: 23.785999999999998
          - type: recall_at_1
            value: 67.604
          - type: recall_at_10
            value: 93.57
          - type: recall_at_100
            value: 99.20400000000001
          - type: recall_at_1000
            value: 99.958
          - type: recall_at_3
            value: 84.38900000000001
          - type: recall_at_5
            value: 89.223
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 52.930534839708464
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 59.6686566444821
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 3.267
          - type: map_at_10
            value: 8.061
          - type: map_at_100
            value: 9.66
          - type: map_at_1000
            value: 9.926
          - type: map_at_3
            value: 5.733
          - type: map_at_5
            value: 6.894
          - type: ndcg_at_1
            value: 16
          - type: ndcg_at_10
            value: 14.155000000000001
          - type: ndcg_at_100
            value: 20.973
          - type: ndcg_at_1000
            value: 26.163999999999998
          - type: ndcg_at_3
            value: 12.994
          - type: ndcg_at_5
            value: 11.58
          - type: precision_at_1
            value: 16
          - type: precision_at_10
            value: 7.470000000000001
          - type: precision_at_100
            value: 1.7389999999999999
          - type: precision_at_1000
            value: 0.299
          - type: precision_at_3
            value: 12.167
          - type: precision_at_5
            value: 10.280000000000001
          - type: recall_at_1
            value: 3.267
          - type: recall_at_10
            value: 15.152
          - type: recall_at_100
            value: 35.248000000000005
          - type: recall_at_1000
            value: 60.742
          - type: recall_at_3
            value: 7.4319999999999995
          - type: recall_at_5
            value: 10.452
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 84.12684378047692
          - type: cos_sim_spearman
            value: 80.18231249099851
          - type: euclidean_pearson
            value: 81.10311004134292
          - type: euclidean_spearman
            value: 80.18231162371262
          - type: manhattan_pearson
            value: 81.06660654194627
          - type: manhattan_spearman
            value: 80.15421301055235
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 86.39022108792102
          - type: cos_sim_spearman
            value: 78.0511871449349
          - type: euclidean_pearson
            value: 83.55414895785707
          - type: euclidean_spearman
            value: 78.04999900363751
          - type: manhattan_pearson
            value: 83.58122709700247
          - type: manhattan_spearman
            value: 78.09617051485085
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 85.20665643089602
          - type: cos_sim_spearman
            value: 85.84897342040492
          - type: euclidean_pearson
            value: 85.07344348481206
          - type: euclidean_spearman
            value: 85.84897334409469
          - type: manhattan_pearson
            value: 85.05095172720918
          - type: manhattan_spearman
            value: 85.82539599484174
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 83.89550144541676
          - type: cos_sim_spearman
            value: 82.18926664662587
          - type: euclidean_pearson
            value: 83.2979886572065
          - type: euclidean_spearman
            value: 82.18927470901535
          - type: manhattan_pearson
            value: 83.26470031355984
          - type: manhattan_spearman
            value: 82.18712042624048
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 86.24309164032012
          - type: cos_sim_spearman
            value: 87.45860981918769
          - type: euclidean_pearson
            value: 87.04473506428359
          - type: euclidean_spearman
            value: 87.45861561864089
          - type: manhattan_pearson
            value: 87.02002615328881
          - type: manhattan_spearman
            value: 87.43661746711435
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 82.24202172291855
          - type: cos_sim_spearman
            value: 84.03233567112525
          - type: euclidean_pearson
            value: 83.5361433714169
          - type: euclidean_spearman
            value: 84.03233506665642
          - type: manhattan_pearson
            value: 83.51738829906122
          - type: manhattan_spearman
            value: 84.02036537979589
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 9.160685666083912
          - type: cos_sim_spearman
            value: 10.0553422118037
          - type: euclidean_pearson
            value: 9.589155152132493
          - type: euclidean_spearman
            value: 10.215143153291868
          - type: manhattan_pearson
            value: 9.570908402796292
          - type: manhattan_spearman
            value: 10.214075999964175
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 10.60353259635145
          - type: cos_sim_spearman
            value: 13.355557088500165
          - type: euclidean_pearson
            value: 14.636463268109537
          - type: euclidean_spearman
            value: 14.35296057730866
          - type: manhattan_pearson
            value: 14.553161459629774
          - type: manhattan_spearman
            value: 14.267005982719008
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: -4.869359628676264
          - type: cos_sim_spearman
            value: -5.6460908267056835
          - type: euclidean_pearson
            value: -4.9763689688023245
          - type: euclidean_spearman
            value: -5.642707032163295
          - type: manhattan_pearson
            value: -2.1980242988428276
          - type: manhattan_spearman
            value: -1.854801657544592
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 66.79239834758799
          - type: cos_sim_spearman
            value: 67.11298548130333
          - type: euclidean_pearson
            value: 66.77948456698994
          - type: euclidean_spearman
            value: 67.11298548130333
          - type: manhattan_pearson
            value: 66.5459479074496
          - type: manhattan_spearman
            value: 66.85517071449804
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 89.5692743691406
          - type: cos_sim_spearman
            value: 89.56885540021487
          - type: euclidean_pearson
            value: 89.78111903652413
          - type: euclidean_spearman
            value: 89.56885540021487
          - type: manhattan_pearson
            value: 89.68974590722112
          - type: manhattan_spearman
            value: 89.40694757290255
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 2.5434531383947427
          - type: cos_sim_spearman
            value: -0.015686409614414636
          - type: euclidean_pearson
            value: 3.3562612023763454
          - type: euclidean_spearman
            value: -0.015686409614414636
          - type: manhattan_pearson
            value: 3.06029066490911
          - type: manhattan_spearman
            value: 0.9087736864115655
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 48.19554059380143
          - type: cos_sim_spearman
            value: 47.72387836409936
          - type: euclidean_pearson
            value: 48.566966490440386
          - type: euclidean_spearman
            value: 47.72387836409936
          - type: manhattan_pearson
            value: 48.47970171544757
          - type: manhattan_spearman
            value: 48.06448477123342
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 80.72325991736295
          - type: cos_sim_spearman
            value: 79.94411571627043
          - type: euclidean_pearson
            value: 81.66909260117279
          - type: euclidean_spearman
            value: 79.94284742229813
          - type: manhattan_pearson
            value: 81.78261278000369
          - type: manhattan_spearman
            value: 80.18524960358721
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 57.385906804319916
          - type: cos_sim_spearman
            value: 56.60927284389835
          - type: euclidean_pearson
            value: 58.220472472555414
          - type: euclidean_spearman
            value: 56.60927284389835
          - type: manhattan_pearson
            value: 57.974972842168704
          - type: manhattan_spearman
            value: 56.38609220634484
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 33.56148532200449
          - type: cos_sim_spearman
            value: 30.46169688812801
          - type: euclidean_pearson
            value: 34.03749511332228
          - type: euclidean_spearman
            value: 30.46169688812801
          - type: manhattan_pearson
            value: 33.51842606041771
          - type: manhattan_spearman
            value: 30.87826743052681
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 37.01008110523631
          - type: cos_sim_spearman
            value: 36.46124293832437
          - type: euclidean_pearson
            value: 37.860431566730725
          - type: euclidean_spearman
            value: 36.46124293832437
          - type: manhattan_pearson
            value: 37.84974555851177
          - type: manhattan_spearman
            value: 37.026498066678556
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 56.563590445291226
          - type: cos_sim_spearman
            value: 62.65994888539158
          - type: euclidean_pearson
            value: 61.43083003163841
          - type: euclidean_spearman
            value: 62.65994888539158
          - type: manhattan_pearson
            value: 61.530512036243564
          - type: manhattan_spearman
            value: 62.65300646176863
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 28.29024604941182
          - type: cos_sim_spearman
            value: 42.084625834786046
          - type: euclidean_pearson
            value: 30.271611311423545
          - type: euclidean_spearman
            value: 42.084625834786046
          - type: manhattan_pearson
            value: 30.19034939394144
          - type: manhattan_spearman
            value: 42.02260224541176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 42.79846662914459
          - type: cos_sim_spearman
            value: 53.8129210907069
          - type: euclidean_pearson
            value: 48.21779716691527
          - type: euclidean_spearman
            value: 53.8129210907069
          - type: manhattan_pearson
            value: 48.35900342355713
          - type: manhattan_spearman
            value: 53.94896150957018
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 9.818882867657061
          - type: cos_sim_spearman
            value: 24.41994279795319
          - type: euclidean_pearson
            value: 4.813919367736767
          - type: euclidean_spearman
            value: 24.41994279795319
          - type: manhattan_pearson
            value: 4.602063702670144
          - type: manhattan_spearman
            value: 24.218951967147824
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 27.410972788257048
          - type: cos_sim_spearman
            value: 40.44872572093327
          - type: euclidean_pearson
            value: 33.742359285090565
          - type: euclidean_spearman
            value: 40.44872572093327
          - type: manhattan_pearson
            value: 33.90231904900396
          - type: manhattan_spearman
            value: 40.19149257794821
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 31.3322380268429
          - type: cos_sim_spearman
            value: 31.200490449337714
          - type: euclidean_pearson
            value: 32.130848968646525
          - type: euclidean_spearman
            value: 31.200490449337714
          - type: manhattan_pearson
            value: 32.14834980954443
          - type: manhattan_spearman
            value: 31.427049121627025
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 3.4365537430337683
          - type: cos_sim_spearman
            value: 12.125486695771288
          - type: euclidean_pearson
            value: 8.134889656987513
          - type: euclidean_spearman
            value: 12.125486695771288
          - type: manhattan_pearson
            value: 8.163310600014055
          - type: manhattan_spearman
            value: 12.129258700591722
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 27.320332340418773
          - type: cos_sim_spearman
            value: 32.900042162025
          - type: euclidean_pearson
            value: 30.195166197236723
          - type: euclidean_spearman
            value: 32.900041812396196
          - type: manhattan_pearson
            value: 30.146557575933087
          - type: manhattan_spearman
            value: 32.96907086076731
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 69.2830779511937
          - type: cos_sim_spearman
            value: 77.68846630995027
          - type: euclidean_pearson
            value: 73.034747757096
          - type: euclidean_spearman
            value: 77.68846630995027
          - type: manhattan_pearson
            value: 73.03548141166142
          - type: manhattan_spearman
            value: 77.65745427658017
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 39.71606949409573
          - type: cos_sim_spearman
            value: 46.8990508231622
          - type: euclidean_pearson
            value: 46.606091669710025
          - type: euclidean_spearman
            value: 46.8990508231622
          - type: manhattan_pearson
            value: 46.39554347396642
          - type: manhattan_spearman
            value: 46.59771734872816
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 54.53158773665186
          - type: cos_sim_spearman
            value: 65.18822674266846
          - type: euclidean_pearson
            value: 58.19324925326185
          - type: euclidean_spearman
            value: 65.18822674266846
          - type: manhattan_pearson
            value: 57.83750769005698
          - type: manhattan_spearman
            value: 65.02074812497972
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 56.77648080772914
          - type: cos_sim_spearman
            value: 60.64694762935356
          - type: euclidean_pearson
            value: 58.1456140359783
          - type: euclidean_spearman
            value: 60.64694762935356
          - type: manhattan_pearson
            value: 58.03342495626636
          - type: manhattan_spearman
            value: 60.384166246014914
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 47.2314368564716
          - type: cos_sim_spearman
            value: 42.96651621279448
          - type: euclidean_pearson
            value: 47.136522518411184
          - type: euclidean_spearman
            value: 42.96651621279448
          - type: manhattan_pearson
            value: 48.71469489220069
          - type: manhattan_spearman
            value: 44.518895193324646
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 25.589949160802995
          - type: cos_sim_spearman
            value: 20.153084379882284
          - type: euclidean_pearson
            value: 26.82363451623337
          - type: euclidean_spearman
            value: 20.153084379882284
          - type: manhattan_pearson
            value: 25.843715884495634
          - type: manhattan_spearman
            value: 18.901328744286676
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 48.45790617159233
          - type: cos_sim_spearman
            value: 55.28609467652911
          - type: euclidean_pearson
            value: 51.88464425822175
          - type: euclidean_spearman
            value: 55.28609467652911
          - type: manhattan_pearson
            value: 51.815736921803136
          - type: manhattan_spearman
            value: 55.33932627352348
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 44.7093430670243
          - type: cos_sim_spearman
            value: 55.04493953270152
          - type: euclidean_pearson
            value: 47.90591946944973
          - type: euclidean_spearman
            value: 55.04493953270152
          - type: manhattan_pearson
            value: 47.964230618301606
          - type: manhattan_spearman
            value: 56.09186738739794
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 25.093485946833393
          - type: cos_sim_spearman
            value: 33.93510205658959
          - type: euclidean_pearson
            value: 27.454896639869027
          - type: euclidean_spearman
            value: 33.93510205658959
          - type: manhattan_pearson
            value: 24.299109196300538
          - type: manhattan_spearman
            value: 32.51857329560673
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 40.9753045484768
          - type: cos_sim_spearman
            value: 28.17180849095055
          - type: euclidean_pearson
            value: 40.382800203298906
          - type: euclidean_spearman
            value: 28.17180849095055
          - type: manhattan_pearson
            value: 34.084425723423486
          - type: manhattan_spearman
            value: 28.17180849095055
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 84.76003618726351
          - type: cos_sim_spearman
            value: 85.52030817522575
          - type: euclidean_pearson
            value: 85.5039926987335
          - type: euclidean_spearman
            value: 85.52030817522575
          - type: manhattan_pearson
            value: 85.51493965359182
          - type: manhattan_spearman
            value: 85.52189380846832
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
        metrics:
          - type: map
            value: 73.96228332723271
          - type: mrr
            value: 91.34847813769382
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 32.372
          - type: map_at_10
            value: 41.02
          - type: map_at_100
            value: 41.907
          - type: map_at_1000
            value: 41.967
          - type: map_at_3
            value: 38.244
          - type: map_at_5
            value: 39.786
          - type: ndcg_at_1
            value: 34.666999999999994
          - type: ndcg_at_10
            value: 45.76
          - type: ndcg_at_100
            value: 50.163999999999994
          - type: ndcg_at_1000
            value: 51.956
          - type: ndcg_at_3
            value: 40.687
          - type: ndcg_at_5
            value: 43.143
          - type: precision_at_1
            value: 34.666999999999994
          - type: precision_at_10
            value: 6.7
          - type: precision_at_100
            value: 0.907
          - type: precision_at_1000
            value: 0.107
          - type: precision_at_3
            value: 16.667
          - type: precision_at_5
            value: 11.466999999999999
          - type: recall_at_1
            value: 32.372
          - type: recall_at_10
            value: 59.061
          - type: recall_at_100
            value: 79.733
          - type: recall_at_1000
            value: 94.167
          - type: recall_at_3
            value: 45.161
          - type: recall_at_5
            value: 51.439
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 99.6960396039604
          - type: cos_sim_ap
            value: 91.22814257221482
          - type: cos_sim_f1
            value: 84.43775100401606
          - type: cos_sim_precision
            value: 84.77822580645162
          - type: cos_sim_recall
            value: 84.1
          - type: dot_accuracy
            value: 99.6960396039604
          - type: dot_ap
            value: 91.22814257221482
          - type: dot_f1
            value: 84.43775100401606
          - type: dot_precision
            value: 84.77822580645162
          - type: dot_recall
            value: 84.1
          - type: euclidean_accuracy
            value: 99.6960396039604
          - type: euclidean_ap
            value: 91.22814257221482
          - type: euclidean_f1
            value: 84.43775100401606
          - type: euclidean_precision
            value: 84.77822580645162
          - type: euclidean_recall
            value: 84.1
          - type: manhattan_accuracy
            value: 99.6960396039604
          - type: manhattan_ap
            value: 91.18887077921163
          - type: manhattan_f1
            value: 84.27991886409735
          - type: manhattan_precision
            value: 85.49382716049382
          - type: manhattan_recall
            value: 83.1
          - type: max_accuracy
            value: 99.6960396039604
          - type: max_ap
            value: 91.22814257221482
          - type: max_f1
            value: 84.43775100401606
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 63.13072579524015
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 35.681141375580225
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 48.46269194141537
          - type: mrr
            value: 49.11958343943638
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 30.709572612837498
          - type: cos_sim_spearman
            value: 31.3940211538976
          - type: dot_pearson
            value: 30.709578240668765
          - type: dot_spearman
            value: 31.3940211538976
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.151
          - type: map_at_10
            value: 0.822
          - type: map_at_100
            value: 4.846
          - type: map_at_1000
            value: 13.117
          - type: map_at_3
            value: 0.349
          - type: map_at_5
            value: 0.49500000000000005
          - type: ndcg_at_1
            value: 48
          - type: ndcg_at_10
            value: 40.699000000000005
          - type: ndcg_at_100
            value: 35.455
          - type: ndcg_at_1000
            value: 35.067
          - type: ndcg_at_3
            value: 44.519999999999996
          - type: ndcg_at_5
            value: 42.697
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 44
          - type: precision_at_100
            value: 37.72
          - type: precision_at_1000
            value: 16.302
          - type: precision_at_3
            value: 50
          - type: precision_at_5
            value: 47.199999999999996
          - type: recall_at_1
            value: 0.151
          - type: recall_at_10
            value: 1.109
          - type: recall_at_100
            value: 8.644
          - type: recall_at_1000
            value: 34.566
          - type: recall_at_3
            value: 0.394
          - type: recall_at_5
            value: 0.601
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 1.786
          - type: map_at_10
            value: 8.379
          - type: map_at_100
            value: 13.618
          - type: map_at_1000
            value: 15.15
          - type: map_at_3
            value: 3.7900000000000005
          - type: map_at_5
            value: 6.1530000000000005
          - type: ndcg_at_1
            value: 19.387999999999998
          - type: ndcg_at_10
            value: 20.296
          - type: ndcg_at_100
            value: 31.828
          - type: ndcg_at_1000
            value: 43.968
          - type: ndcg_at_3
            value: 19.583000000000002
          - type: ndcg_at_5
            value: 21.066
          - type: precision_at_1
            value: 22.448999999999998
          - type: precision_at_10
            value: 19.592000000000002
          - type: precision_at_100
            value: 7.041
          - type: precision_at_1000
            value: 1.49
          - type: precision_at_3
            value: 22.448999999999998
          - type: precision_at_5
            value: 24.490000000000002
          - type: recall_at_1
            value: 1.786
          - type: recall_at_10
            value: 14.571000000000002
          - type: recall_at_100
            value: 44.247
          - type: recall_at_1000
            value: 80.36
          - type: recall_at_3
            value: 5.117
          - type: recall_at_5
            value: 9.449
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 68.19919999999999
          - type: ap
            value: 14.328836562980976
          - type: f1
            value: 53.33893474325896
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 62.71080928126768
          - type: f1
            value: 62.35221892617029
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 48.099101871064484
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 87.60207426834357
          - type: cos_sim_ap
            value: 78.25096573546108
          - type: cos_sim_f1
            value: 71.740233384069
          - type: cos_sim_precision
            value: 69.07669760625306
          - type: cos_sim_recall
            value: 74.6174142480211
          - type: dot_accuracy
            value: 87.60207426834357
          - type: dot_ap
            value: 78.25097910093768
          - type: dot_f1
            value: 71.740233384069
          - type: dot_precision
            value: 69.07669760625306
          - type: dot_recall
            value: 74.6174142480211
          - type: euclidean_accuracy
            value: 87.60207426834357
          - type: euclidean_ap
            value: 78.25097099603116
          - type: euclidean_f1
            value: 71.740233384069
          - type: euclidean_precision
            value: 69.07669760625306
          - type: euclidean_recall
            value: 74.6174142480211
          - type: manhattan_accuracy
            value: 87.61399535077786
          - type: manhattan_ap
            value: 78.238484943708
          - type: manhattan_f1
            value: 71.77797490812317
          - type: manhattan_precision
            value: 69.05632772494513
          - type: manhattan_recall
            value: 74.72295514511873
          - type: max_accuracy
            value: 87.61399535077786
          - type: max_ap
            value: 78.25097910093768
          - type: max_f1
            value: 71.77797490812317
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 89.17413746264602
          - type: cos_sim_ap
            value: 86.04575990028458
          - type: cos_sim_f1
            value: 78.52034894604814
          - type: cos_sim_precision
            value: 76.42300123897675
          - type: cos_sim_recall
            value: 80.73606405913151
          - type: dot_accuracy
            value: 89.17413746264602
          - type: dot_ap
            value: 86.04575880500646
          - type: dot_f1
            value: 78.52034894604814
          - type: dot_precision
            value: 76.42300123897675
          - type: dot_recall
            value: 80.73606405913151
          - type: euclidean_accuracy
            value: 89.17413746264602
          - type: euclidean_ap
            value: 86.04575106124874
          - type: euclidean_f1
            value: 78.52034894604814
          - type: euclidean_precision
            value: 76.42300123897675
          - type: euclidean_recall
            value: 80.73606405913151
          - type: manhattan_accuracy
            value: 89.14891139830016
          - type: manhattan_ap
            value: 86.01748033351211
          - type: manhattan_f1
            value: 78.48817724818471
          - type: manhattan_precision
            value: 76.00057690920892
          - type: manhattan_recall
            value: 81.14413304588851
          - type: max_accuracy
            value: 89.17413746264602
          - type: max_ap
            value: 86.04575990028458
          - type: max_f1
            value: 78.52034894604814

sentence-transformers/sentence-t5-base

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.

This model was converted from the Tensorflow model st5-base-1 to PyTorch. When using this model, have a look at the publication: Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models. The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results.

The model uses only the encoder from a T5-base model. The weights are stored in FP16.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/sentence-t5-base')
embeddings = model.encode(sentences)
print(embeddings)

The model requires sentence-transformers version 2.2.0 or newer.

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Citing & Authors

If you find this model helpful, please cite the respective publication: Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models