|
--- |
|
pipeline_tag: sentence-similarity |
|
language: en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- mteb |
|
model-index: |
|
- name: sentence-t5-base |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 75.82089552238807 |
|
- type: ap |
|
value: 40.58809426967639 |
|
- type: f1 |
|
value: 70.5050115572668 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 69.97858672376874 |
|
- type: ap |
|
value: 80.89622545806847 |
|
- type: f1 |
|
value: 68.09770164363411 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
config: en-ext |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 76.80659670164917 |
|
- type: ap |
|
value: 26.663544686227127 |
|
- type: f1 |
|
value: 64.52406535274052 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
config: ja |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 46.04925053533191 |
|
- type: ap |
|
value: 10.574096802771448 |
|
- type: f1 |
|
value: 36.74441737116304 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 85.11737500000001 |
|
- type: ap |
|
value: 81.28435308927632 |
|
- type: f1 |
|
value: 85.01612484917347 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 44.943999999999996 |
|
- type: f1 |
|
value: 42.681783855948844 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 37.895999999999994 |
|
- type: f1 |
|
value: 35.428429230946115 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 37.328 |
|
- type: f1 |
|
value: 34.26335456752553 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 37.35 |
|
- type: f1 |
|
value: 34.644931974230495 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
config: ja |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 22.290000000000003 |
|
- type: f1 |
|
value: 20.438677904046305 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 21.529999999999998 |
|
- type: f1 |
|
value: 18.273004097867844 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.906 |
|
- type: map_at_10 |
|
value: 35.993 |
|
- type: map_at_100 |
|
value: 37.14 |
|
- type: map_at_1000 |
|
value: 37.153999999999996 |
|
- type: map_at_3 |
|
value: 30.642000000000003 |
|
- type: map_at_5 |
|
value: 33.534000000000006 |
|
- type: ndcg_at_1 |
|
value: 21.906 |
|
- type: ndcg_at_10 |
|
value: 44.846000000000004 |
|
- type: ndcg_at_100 |
|
value: 49.95 |
|
- type: ndcg_at_1000 |
|
value: 50.29 |
|
- type: ndcg_at_3 |
|
value: 33.579 |
|
- type: ndcg_at_5 |
|
value: 38.807 |
|
- type: precision_at_1 |
|
value: 21.906 |
|
- type: precision_at_10 |
|
value: 7.367999999999999 |
|
- type: precision_at_100 |
|
value: 0.966 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 14.035 |
|
- type: precision_at_5 |
|
value: 10.967 |
|
- type: recall_at_1 |
|
value: 21.906 |
|
- type: recall_at_10 |
|
value: 73.68400000000001 |
|
- type: recall_at_100 |
|
value: 96.586 |
|
- type: recall_at_1000 |
|
value: 99.14699999999999 |
|
- type: recall_at_3 |
|
value: 42.105 |
|
- type: recall_at_5 |
|
value: 54.836 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 39.27529166223639 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 27.261128959373327 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 59.72875661091822 |
|
- type: mrr |
|
value: 72.76997317856043 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.50587493517146 |
|
- type: cos_sim_spearman |
|
value: 75.89088585182279 |
|
- type: euclidean_pearson |
|
value: 75.74627833999679 |
|
- type: euclidean_spearman |
|
value: 75.89088585182279 |
|
- type: manhattan_pearson |
|
value: 76.10746255262428 |
|
- type: manhattan_spearman |
|
value: 75.93968214440233 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 76.47727272727273 |
|
- type: f1 |
|
value: 75.41900393828456 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 33.98533095653499 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 22.921149832439514 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.97 |
|
- type: map_at_10 |
|
value: 39.523 |
|
- type: map_at_100 |
|
value: 41.101 |
|
- type: map_at_1000 |
|
value: 41.221000000000004 |
|
- type: map_at_3 |
|
value: 36.193999999999996 |
|
- type: map_at_5 |
|
value: 37.952000000000005 |
|
- type: ndcg_at_1 |
|
value: 34.621 |
|
- type: ndcg_at_10 |
|
value: 46.18 |
|
- type: ndcg_at_100 |
|
value: 51.93600000000001 |
|
- type: ndcg_at_1000 |
|
value: 53.833 |
|
- type: ndcg_at_3 |
|
value: 41.091 |
|
- type: ndcg_at_5 |
|
value: 43.230000000000004 |
|
- type: precision_at_1 |
|
value: 34.621 |
|
- type: precision_at_10 |
|
value: 9.041 |
|
- type: precision_at_100 |
|
value: 1.525 |
|
- type: precision_at_1000 |
|
value: 0.19499999999999998 |
|
- type: precision_at_3 |
|
value: 20.029 |
|
- type: precision_at_5 |
|
value: 14.335 |
|
- type: recall_at_1 |
|
value: 27.97 |
|
- type: recall_at_10 |
|
value: 59.325 |
|
- type: recall_at_100 |
|
value: 82.917 |
|
- type: recall_at_1000 |
|
value: 95.175 |
|
- type: recall_at_3 |
|
value: 44.251000000000005 |
|
- type: recall_at_5 |
|
value: 50.383 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.701 |
|
- type: map_at_10 |
|
value: 32.094 |
|
- type: map_at_100 |
|
value: 33.293 |
|
- type: map_at_1000 |
|
value: 33.434999999999995 |
|
- type: map_at_3 |
|
value: 29.609999999999996 |
|
- type: map_at_5 |
|
value: 31.16 |
|
- type: ndcg_at_1 |
|
value: 30.573 |
|
- type: ndcg_at_10 |
|
value: 37.031 |
|
- type: ndcg_at_100 |
|
value: 42.001 |
|
- type: ndcg_at_1000 |
|
value: 44.714 |
|
- type: ndcg_at_3 |
|
value: 33.434999999999995 |
|
- type: ndcg_at_5 |
|
value: 35.356 |
|
- type: precision_at_1 |
|
value: 30.573 |
|
- type: precision_at_10 |
|
value: 6.854 |
|
- type: precision_at_100 |
|
value: 1.192 |
|
- type: precision_at_1000 |
|
value: 0.174 |
|
- type: precision_at_3 |
|
value: 16.178 |
|
- type: precision_at_5 |
|
value: 11.567 |
|
- type: recall_at_1 |
|
value: 23.701 |
|
- type: recall_at_10 |
|
value: 45.755 |
|
- type: recall_at_100 |
|
value: 67.035 |
|
- type: recall_at_1000 |
|
value: 84.893 |
|
- type: recall_at_3 |
|
value: 34.977999999999994 |
|
- type: recall_at_5 |
|
value: 40.357 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.617 |
|
- type: map_at_10 |
|
value: 47.774 |
|
- type: map_at_100 |
|
value: 48.943999999999996 |
|
- type: map_at_1000 |
|
value: 49.007 |
|
- type: map_at_3 |
|
value: 44.214999999999996 |
|
- type: map_at_5 |
|
value: 46.291 |
|
- type: ndcg_at_1 |
|
value: 40.627 |
|
- type: ndcg_at_10 |
|
value: 53.952 |
|
- type: ndcg_at_100 |
|
value: 58.55200000000001 |
|
- type: ndcg_at_1000 |
|
value: 59.824 |
|
- type: ndcg_at_3 |
|
value: 47.911 |
|
- type: ndcg_at_5 |
|
value: 50.966 |
|
- type: precision_at_1 |
|
value: 40.627 |
|
- type: precision_at_10 |
|
value: 8.884 |
|
- type: precision_at_100 |
|
value: 1.213 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 21.337999999999997 |
|
- type: precision_at_5 |
|
value: 15.034 |
|
- type: recall_at_1 |
|
value: 35.617 |
|
- type: recall_at_10 |
|
value: 68.73599999999999 |
|
- type: recall_at_100 |
|
value: 88.42999999999999 |
|
- type: recall_at_1000 |
|
value: 97.455 |
|
- type: recall_at_3 |
|
value: 52.915 |
|
- type: recall_at_5 |
|
value: 60.182 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.029999999999998 |
|
- type: map_at_10 |
|
value: 27.915 |
|
- type: map_at_100 |
|
value: 28.924 |
|
- type: map_at_1000 |
|
value: 29.023 |
|
- type: map_at_3 |
|
value: 25.634 |
|
- type: map_at_5 |
|
value: 26.934 |
|
- type: ndcg_at_1 |
|
value: 22.599 |
|
- type: ndcg_at_10 |
|
value: 32.340999999999994 |
|
- type: ndcg_at_100 |
|
value: 37.422 |
|
- type: ndcg_at_1000 |
|
value: 40.014 |
|
- type: ndcg_at_3 |
|
value: 27.604 |
|
- type: ndcg_at_5 |
|
value: 29.872 |
|
- type: precision_at_1 |
|
value: 22.599 |
|
- type: precision_at_10 |
|
value: 5.051 |
|
- type: precision_at_100 |
|
value: 0.799 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 11.562999999999999 |
|
- type: precision_at_5 |
|
value: 8.225999999999999 |
|
- type: recall_at_1 |
|
value: 21.029999999999998 |
|
- type: recall_at_10 |
|
value: 44.226 |
|
- type: recall_at_100 |
|
value: 67.902 |
|
- type: recall_at_1000 |
|
value: 87.497 |
|
- type: recall_at_3 |
|
value: 31.389 |
|
- type: recall_at_5 |
|
value: 36.888 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.592 |
|
- type: map_at_10 |
|
value: 20.054 |
|
- type: map_at_100 |
|
value: 21.384 |
|
- type: map_at_1000 |
|
value: 21.52 |
|
- type: map_at_3 |
|
value: 17.718999999999998 |
|
- type: map_at_5 |
|
value: 19.189999999999998 |
|
- type: ndcg_at_1 |
|
value: 15.299 |
|
- type: ndcg_at_10 |
|
value: 24.698 |
|
- type: ndcg_at_100 |
|
value: 31.080000000000002 |
|
- type: ndcg_at_1000 |
|
value: 34.266000000000005 |
|
- type: ndcg_at_3 |
|
value: 20.331 |
|
- type: ndcg_at_5 |
|
value: 22.735 |
|
- type: precision_at_1 |
|
value: 15.299 |
|
- type: precision_at_10 |
|
value: 4.776 |
|
- type: precision_at_100 |
|
value: 0.928 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 10.033 |
|
- type: precision_at_5 |
|
value: 7.761 |
|
- type: recall_at_1 |
|
value: 12.592 |
|
- type: recall_at_10 |
|
value: 35.386 |
|
- type: recall_at_100 |
|
value: 63.412 |
|
- type: recall_at_1000 |
|
value: 86.20400000000001 |
|
- type: recall_at_3 |
|
value: 23.768 |
|
- type: recall_at_5 |
|
value: 29.557 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.549 |
|
- type: map_at_10 |
|
value: 32.875 |
|
- type: map_at_100 |
|
value: 34.247 |
|
- type: map_at_1000 |
|
value: 34.374 |
|
- type: map_at_3 |
|
value: 29.774 |
|
- type: map_at_5 |
|
value: 31.535000000000004 |
|
- type: ndcg_at_1 |
|
value: 28.874 |
|
- type: ndcg_at_10 |
|
value: 38.801 |
|
- type: ndcg_at_100 |
|
value: 44.727 |
|
- type: ndcg_at_1000 |
|
value: 47.154 |
|
- type: ndcg_at_3 |
|
value: 33.643 |
|
- type: ndcg_at_5 |
|
value: 36.046 |
|
- type: precision_at_1 |
|
value: 28.874 |
|
- type: precision_at_10 |
|
value: 7.305000000000001 |
|
- type: precision_at_100 |
|
value: 1.21 |
|
- type: precision_at_1000 |
|
value: 0.16199999999999998 |
|
- type: precision_at_3 |
|
value: 16.009 |
|
- type: precision_at_5 |
|
value: 11.741999999999999 |
|
- type: recall_at_1 |
|
value: 23.549 |
|
- type: recall_at_10 |
|
value: 51.15 |
|
- type: recall_at_100 |
|
value: 76.32900000000001 |
|
- type: recall_at_1000 |
|
value: 92.167 |
|
- type: recall_at_3 |
|
value: 36.544 |
|
- type: recall_at_5 |
|
value: 42.75 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.524 |
|
- type: map_at_10 |
|
value: 34.288999999999994 |
|
- type: map_at_100 |
|
value: 35.67 |
|
- type: map_at_1000 |
|
value: 35.788 |
|
- type: map_at_3 |
|
value: 31.029 |
|
- type: map_at_5 |
|
value: 32.767 |
|
- type: ndcg_at_1 |
|
value: 29.794999999999998 |
|
- type: ndcg_at_10 |
|
value: 40.164 |
|
- type: ndcg_at_100 |
|
value: 46.278999999999996 |
|
- type: ndcg_at_1000 |
|
value: 48.698 |
|
- type: ndcg_at_3 |
|
value: 34.648 |
|
- type: ndcg_at_5 |
|
value: 36.982 |
|
- type: precision_at_1 |
|
value: 29.794999999999998 |
|
- type: precision_at_10 |
|
value: 7.580000000000001 |
|
- type: precision_at_100 |
|
value: 1.248 |
|
- type: precision_at_1000 |
|
value: 0.165 |
|
- type: precision_at_3 |
|
value: 16.628999999999998 |
|
- type: precision_at_5 |
|
value: 12.055 |
|
- type: recall_at_1 |
|
value: 24.524 |
|
- type: recall_at_10 |
|
value: 52.782 |
|
- type: recall_at_100 |
|
value: 79.108 |
|
- type: recall_at_1000 |
|
value: 95.62899999999999 |
|
- type: recall_at_3 |
|
value: 37.330999999999996 |
|
- type: recall_at_5 |
|
value: 43.502 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.669083333333333 |
|
- type: map_at_10 |
|
value: 30.095166666666668 |
|
- type: map_at_100 |
|
value: 31.35275 |
|
- type: map_at_1000 |
|
value: 31.476166666666668 |
|
- type: map_at_3 |
|
value: 27.41675 |
|
- type: map_at_5 |
|
value: 28.91216666666667 |
|
- type: ndcg_at_1 |
|
value: 25.666833333333333 |
|
- type: ndcg_at_10 |
|
value: 35.23175 |
|
- type: ndcg_at_100 |
|
value: 40.822833333333335 |
|
- type: ndcg_at_1000 |
|
value: 43.33783333333334 |
|
- type: ndcg_at_3 |
|
value: 30.516333333333336 |
|
- type: ndcg_at_5 |
|
value: 32.723 |
|
- type: precision_at_1 |
|
value: 25.666833333333333 |
|
- type: precision_at_10 |
|
value: 6.345583333333332 |
|
- type: precision_at_100 |
|
value: 1.0886666666666667 |
|
- type: precision_at_1000 |
|
value: 0.14974999999999997 |
|
- type: precision_at_3 |
|
value: 14.185583333333335 |
|
- type: precision_at_5 |
|
value: 10.265333333333334 |
|
- type: recall_at_1 |
|
value: 21.669083333333333 |
|
- type: recall_at_10 |
|
value: 46.69591666666667 |
|
- type: recall_at_100 |
|
value: 71.36999999999999 |
|
- type: recall_at_1000 |
|
value: 88.98216666666666 |
|
- type: recall_at_3 |
|
value: 33.59675 |
|
- type: recall_at_5 |
|
value: 39.2065 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.587999999999997 |
|
- type: map_at_10 |
|
value: 25.452 |
|
- type: map_at_100 |
|
value: 26.296999999999997 |
|
- type: map_at_1000 |
|
value: 26.394000000000002 |
|
- type: map_at_3 |
|
value: 23.474 |
|
- type: map_at_5 |
|
value: 24.629 |
|
- type: ndcg_at_1 |
|
value: 21.012 |
|
- type: ndcg_at_10 |
|
value: 29.369 |
|
- type: ndcg_at_100 |
|
value: 33.782000000000004 |
|
- type: ndcg_at_1000 |
|
value: 36.406 |
|
- type: ndcg_at_3 |
|
value: 25.45 |
|
- type: ndcg_at_5 |
|
value: 27.384999999999998 |
|
- type: precision_at_1 |
|
value: 21.012 |
|
- type: precision_at_10 |
|
value: 4.723999999999999 |
|
- type: precision_at_100 |
|
value: 0.753 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 11.094 |
|
- type: precision_at_5 |
|
value: 7.914000000000001 |
|
- type: recall_at_1 |
|
value: 18.587999999999997 |
|
- type: recall_at_10 |
|
value: 39.413 |
|
- type: recall_at_100 |
|
value: 59.78 |
|
- type: recall_at_1000 |
|
value: 79.49199999999999 |
|
- type: recall_at_3 |
|
value: 28.485 |
|
- type: recall_at_5 |
|
value: 33.367999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.76 |
|
- type: map_at_10 |
|
value: 18.859 |
|
- type: map_at_100 |
|
value: 19.865 |
|
- type: map_at_1000 |
|
value: 19.994 |
|
- type: map_at_3 |
|
value: 16.817 |
|
- type: map_at_5 |
|
value: 17.837 |
|
- type: ndcg_at_1 |
|
value: 15.415999999999999 |
|
- type: ndcg_at_10 |
|
value: 23.037 |
|
- type: ndcg_at_100 |
|
value: 28.164 |
|
- type: ndcg_at_1000 |
|
value: 31.404 |
|
- type: ndcg_at_3 |
|
value: 19.134999999999998 |
|
- type: ndcg_at_5 |
|
value: 20.711 |
|
- type: precision_at_1 |
|
value: 15.415999999999999 |
|
- type: precision_at_10 |
|
value: 4.387 |
|
- type: precision_at_100 |
|
value: 0.826 |
|
- type: precision_at_1000 |
|
value: 0.127 |
|
- type: precision_at_3 |
|
value: 9.257 |
|
- type: precision_at_5 |
|
value: 6.696000000000001 |
|
- type: recall_at_1 |
|
value: 12.76 |
|
- type: recall_at_10 |
|
value: 32.657000000000004 |
|
- type: recall_at_100 |
|
value: 56.023 |
|
- type: recall_at_1000 |
|
value: 79.572 |
|
- type: recall_at_3 |
|
value: 21.608 |
|
- type: recall_at_5 |
|
value: 25.726 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.415 |
|
- type: map_at_10 |
|
value: 29.957 |
|
- type: map_at_100 |
|
value: 31.234 |
|
- type: map_at_1000 |
|
value: 31.351000000000003 |
|
- type: map_at_3 |
|
value: 27.261999999999997 |
|
- type: map_at_5 |
|
value: 28.708 |
|
- type: ndcg_at_1 |
|
value: 26.118999999999996 |
|
- type: ndcg_at_10 |
|
value: 34.961999999999996 |
|
- type: ndcg_at_100 |
|
value: 40.876000000000005 |
|
- type: ndcg_at_1000 |
|
value: 43.586000000000006 |
|
- type: ndcg_at_3 |
|
value: 29.958000000000002 |
|
- type: ndcg_at_5 |
|
value: 32.228 |
|
- type: precision_at_1 |
|
value: 26.118999999999996 |
|
- type: precision_at_10 |
|
value: 6.053999999999999 |
|
- type: precision_at_100 |
|
value: 1.012 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 13.65 |
|
- type: precision_at_5 |
|
value: 9.795 |
|
- type: recall_at_1 |
|
value: 22.415 |
|
- type: recall_at_10 |
|
value: 46.339000000000006 |
|
- type: recall_at_100 |
|
value: 72.30799999999999 |
|
- type: recall_at_1000 |
|
value: 91.448 |
|
- type: recall_at_3 |
|
value: 32.673 |
|
- type: recall_at_5 |
|
value: 38.467 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.624 |
|
- type: map_at_10 |
|
value: 30.0 |
|
- type: map_at_100 |
|
value: 31.776 |
|
- type: map_at_1000 |
|
value: 32.005 |
|
- type: map_at_3 |
|
value: 27.314 |
|
- type: map_at_5 |
|
value: 28.741 |
|
- type: ndcg_at_1 |
|
value: 25.691999999999997 |
|
- type: ndcg_at_10 |
|
value: 35.64 |
|
- type: ndcg_at_100 |
|
value: 42.488 |
|
- type: ndcg_at_1000 |
|
value: 44.978 |
|
- type: ndcg_at_3 |
|
value: 31.147000000000002 |
|
- type: ndcg_at_5 |
|
value: 33.241 |
|
- type: precision_at_1 |
|
value: 25.691999999999997 |
|
- type: precision_at_10 |
|
value: 7.0360000000000005 |
|
- type: precision_at_100 |
|
value: 1.547 |
|
- type: precision_at_1000 |
|
value: 0.244 |
|
- type: precision_at_3 |
|
value: 15.02 |
|
- type: precision_at_5 |
|
value: 11.146 |
|
- type: recall_at_1 |
|
value: 21.624 |
|
- type: recall_at_10 |
|
value: 46.415 |
|
- type: recall_at_100 |
|
value: 77.086 |
|
- type: recall_at_1000 |
|
value: 92.72500000000001 |
|
- type: recall_at_3 |
|
value: 33.911 |
|
- type: recall_at_5 |
|
value: 39.116 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.659 |
|
- type: map_at_10 |
|
value: 22.35 |
|
- type: map_at_100 |
|
value: 23.498 |
|
- type: map_at_1000 |
|
value: 23.602 |
|
- type: map_at_3 |
|
value: 19.959 |
|
- type: map_at_5 |
|
value: 21.201999999999998 |
|
- type: ndcg_at_1 |
|
value: 17.375 |
|
- type: ndcg_at_10 |
|
value: 26.606 |
|
- type: ndcg_at_100 |
|
value: 32.567 |
|
- type: ndcg_at_1000 |
|
value: 35.177 |
|
- type: ndcg_at_3 |
|
value: 21.843 |
|
- type: ndcg_at_5 |
|
value: 23.924 |
|
- type: precision_at_1 |
|
value: 17.375 |
|
- type: precision_at_10 |
|
value: 4.455 |
|
- type: precision_at_100 |
|
value: 0.8109999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11199999999999999 |
|
- type: precision_at_3 |
|
value: 9.427000000000001 |
|
- type: precision_at_5 |
|
value: 6.912999999999999 |
|
- type: recall_at_1 |
|
value: 15.659 |
|
- type: recall_at_10 |
|
value: 38.167 |
|
- type: recall_at_100 |
|
value: 66.11 |
|
- type: recall_at_1000 |
|
value: 85.529 |
|
- type: recall_at_3 |
|
value: 25.308000000000003 |
|
- type: recall_at_5 |
|
value: 30.182 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.9469999999999996 |
|
- type: map_at_10 |
|
value: 6.816999999999999 |
|
- type: map_at_100 |
|
value: 7.7170000000000005 |
|
- type: map_at_1000 |
|
value: 7.887 |
|
- type: map_at_3 |
|
value: 5.6739999999999995 |
|
- type: map_at_5 |
|
value: 6.243 |
|
- type: ndcg_at_1 |
|
value: 8.73 |
|
- type: ndcg_at_10 |
|
value: 10.366999999999999 |
|
- type: ndcg_at_100 |
|
value: 15.343000000000002 |
|
- type: ndcg_at_1000 |
|
value: 19.535 |
|
- type: ndcg_at_3 |
|
value: 7.976 |
|
- type: ndcg_at_5 |
|
value: 8.786 |
|
- type: precision_at_1 |
|
value: 8.73 |
|
- type: precision_at_10 |
|
value: 3.3160000000000003 |
|
- type: precision_at_100 |
|
value: 0.857 |
|
- type: precision_at_1000 |
|
value: 0.16199999999999998 |
|
- type: precision_at_3 |
|
value: 5.776 |
|
- type: precision_at_5 |
|
value: 4.534 |
|
- type: recall_at_1 |
|
value: 3.9469999999999996 |
|
- type: recall_at_10 |
|
value: 13.385 |
|
- type: recall_at_100 |
|
value: 31.612000000000002 |
|
- type: recall_at_1000 |
|
value: 56.252 |
|
- type: recall_at_3 |
|
value: 7.686 |
|
- type: recall_at_5 |
|
value: 9.879 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.75 |
|
- type: map_at_10 |
|
value: 11.632000000000001 |
|
- type: map_at_100 |
|
value: 16.400000000000002 |
|
- type: map_at_1000 |
|
value: 17.580000000000002 |
|
- type: map_at_3 |
|
value: 8.49 |
|
- type: map_at_5 |
|
value: 9.626999999999999 |
|
- type: ndcg_at_1 |
|
value: 35.75 |
|
- type: ndcg_at_10 |
|
value: 27.766000000000002 |
|
- type: ndcg_at_100 |
|
value: 31.424000000000003 |
|
- type: ndcg_at_1000 |
|
value: 38.998 |
|
- type: ndcg_at_3 |
|
value: 30.807000000000002 |
|
- type: ndcg_at_5 |
|
value: 28.62 |
|
- type: precision_at_1 |
|
value: 44.25 |
|
- type: precision_at_10 |
|
value: 22.625 |
|
- type: precision_at_100 |
|
value: 7.163 |
|
- type: precision_at_1000 |
|
value: 1.619 |
|
- type: precision_at_3 |
|
value: 33.75 |
|
- type: precision_at_5 |
|
value: 28.199999999999996 |
|
- type: recall_at_1 |
|
value: 5.75 |
|
- type: recall_at_10 |
|
value: 16.918 |
|
- type: recall_at_100 |
|
value: 37.645 |
|
- type: recall_at_1000 |
|
value: 62.197 |
|
- type: recall_at_3 |
|
value: 9.721 |
|
- type: recall_at_5 |
|
value: 11.974 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 51.355000000000004 |
|
- type: f1 |
|
value: 44.27505726378252 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.81 |
|
- type: map_at_10 |
|
value: 21.567 |
|
- type: map_at_100 |
|
value: 22.461000000000002 |
|
- type: map_at_1000 |
|
value: 22.545 |
|
- type: map_at_3 |
|
value: 19.282 |
|
- type: map_at_5 |
|
value: 20.535999999999998 |
|
- type: ndcg_at_1 |
|
value: 15.032 |
|
- type: ndcg_at_10 |
|
value: 26.165 |
|
- type: ndcg_at_100 |
|
value: 30.819999999999997 |
|
- type: ndcg_at_1000 |
|
value: 33.209 |
|
- type: ndcg_at_3 |
|
value: 21.488 |
|
- type: ndcg_at_5 |
|
value: 23.721999999999998 |
|
- type: precision_at_1 |
|
value: 15.032 |
|
- type: precision_at_10 |
|
value: 4.292 |
|
- type: precision_at_100 |
|
value: 0.6779999999999999 |
|
- type: precision_at_1000 |
|
value: 0.09 |
|
- type: precision_at_3 |
|
value: 9.551 |
|
- type: precision_at_5 |
|
value: 6.927999999999999 |
|
- type: recall_at_1 |
|
value: 13.81 |
|
- type: recall_at_10 |
|
value: 39.009 |
|
- type: recall_at_100 |
|
value: 60.99400000000001 |
|
- type: recall_at_1000 |
|
value: 79.703 |
|
- type: recall_at_3 |
|
value: 26.221 |
|
- type: recall_at_5 |
|
value: 31.604 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.55 |
|
- type: map_at_10 |
|
value: 27.101 |
|
- type: map_at_100 |
|
value: 28.941 |
|
- type: map_at_1000 |
|
value: 29.137 |
|
- type: map_at_3 |
|
value: 22.926 |
|
- type: map_at_5 |
|
value: 25.217 |
|
- type: ndcg_at_1 |
|
value: 33.951 |
|
- type: ndcg_at_10 |
|
value: 34.832 |
|
- type: ndcg_at_100 |
|
value: 41.989 |
|
- type: ndcg_at_1000 |
|
value: 45.262 |
|
- type: ndcg_at_3 |
|
value: 30.427 |
|
- type: ndcg_at_5 |
|
value: 31.985999999999997 |
|
- type: precision_at_1 |
|
value: 33.951 |
|
- type: precision_at_10 |
|
value: 10.139 |
|
- type: precision_at_100 |
|
value: 1.735 |
|
- type: precision_at_1000 |
|
value: 0.233 |
|
- type: precision_at_3 |
|
value: 20.576 |
|
- type: precision_at_5 |
|
value: 15.556000000000001 |
|
- type: recall_at_1 |
|
value: 16.55 |
|
- type: recall_at_10 |
|
value: 42.153 |
|
- type: recall_at_100 |
|
value: 69.19999999999999 |
|
- type: recall_at_1000 |
|
value: 88.631 |
|
- type: recall_at_3 |
|
value: 27.071 |
|
- type: recall_at_5 |
|
value: 33.432 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.102999999999998 |
|
- type: map_at_10 |
|
value: 26.006 |
|
- type: map_at_100 |
|
value: 27.060000000000002 |
|
- type: map_at_1000 |
|
value: 27.173000000000002 |
|
- type: map_at_3 |
|
value: 23.815 |
|
- type: map_at_5 |
|
value: 24.978 |
|
- type: ndcg_at_1 |
|
value: 36.205 |
|
- type: ndcg_at_10 |
|
value: 33.198 |
|
- type: ndcg_at_100 |
|
value: 37.836999999999996 |
|
- type: ndcg_at_1000 |
|
value: 40.499 |
|
- type: ndcg_at_3 |
|
value: 29.108 |
|
- type: ndcg_at_5 |
|
value: 30.993 |
|
- type: precision_at_1 |
|
value: 36.205 |
|
- type: precision_at_10 |
|
value: 7.404 |
|
- type: precision_at_100 |
|
value: 1.109 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 18.479 |
|
- type: precision_at_5 |
|
value: 12.581000000000001 |
|
- type: recall_at_1 |
|
value: 18.102999999999998 |
|
- type: recall_at_10 |
|
value: 37.022 |
|
- type: recall_at_100 |
|
value: 55.449000000000005 |
|
- type: recall_at_1000 |
|
value: 73.214 |
|
- type: recall_at_3 |
|
value: 27.717999999999996 |
|
- type: recall_at_5 |
|
value: 31.452 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 77.3372 |
|
- type: ap |
|
value: 71.64946791935137 |
|
- type: f1 |
|
value: 77.13428403424751 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.093 |
|
- type: map_at_10 |
|
value: 16.227 |
|
- type: map_at_100 |
|
value: 17.477999999999998 |
|
- type: map_at_1000 |
|
value: 17.579 |
|
- type: map_at_3 |
|
value: 13.541 |
|
- type: map_at_5 |
|
value: 14.921000000000001 |
|
- type: ndcg_at_1 |
|
value: 9.370000000000001 |
|
- type: ndcg_at_10 |
|
value: 20.705000000000002 |
|
- type: ndcg_at_100 |
|
value: 27.331 |
|
- type: ndcg_at_1000 |
|
value: 30.104 |
|
- type: ndcg_at_3 |
|
value: 15.081 |
|
- type: ndcg_at_5 |
|
value: 17.551 |
|
- type: precision_at_1 |
|
value: 9.370000000000001 |
|
- type: precision_at_10 |
|
value: 3.633 |
|
- type: precision_at_100 |
|
value: 0.7040000000000001 |
|
- type: precision_at_1000 |
|
value: 0.094 |
|
- type: precision_at_3 |
|
value: 6.648 |
|
- type: precision_at_5 |
|
value: 5.241 |
|
- type: recall_at_1 |
|
value: 9.093 |
|
- type: recall_at_10 |
|
value: 34.777 |
|
- type: recall_at_100 |
|
value: 66.673 |
|
- type: recall_at_1000 |
|
value: 88.44999999999999 |
|
- type: recall_at_3 |
|
value: 19.194 |
|
- type: recall_at_5 |
|
value: 25.124999999999996 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 90.3374373005016 |
|
- type: f1 |
|
value: 90.25497662319412 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 76.98224852071004 |
|
- type: f1 |
|
value: 75.10443724253962 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 73.60907271514343 |
|
- type: f1 |
|
value: 73.15530983235772 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 75.02975258377701 |
|
- type: f1 |
|
value: 75.53083321964739 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 21.40193617784152 |
|
- type: f1 |
|
value: 15.465217146460256 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
config: th |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 16.206148282097647 |
|
- type: f1 |
|
value: 11.580229602870345 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 63.32421340629275 |
|
- type: f1 |
|
value: 45.42341063027956 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 44.426599041983664 |
|
- type: f1 |
|
value: 27.205947872504428 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 42.02801867911942 |
|
- type: f1 |
|
value: 26.314909946795733 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 43.845912934544316 |
|
- type: f1 |
|
value: 29.519701972859792 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 3.80064539261384 |
|
- type: f1 |
|
value: 1.2078686392462628 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
config: th |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 5.207956600361665 |
|
- type: f1 |
|
value: 1.5365513001536746 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
config: af |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 34.32078009414929 |
|
- type: f1 |
|
value: 31.969428974847435 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
config: am |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.3772696704774714 |
|
- type: f1 |
|
value: 1.027013290806954 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
config: ar |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 4.53261600537996 |
|
- type: f1 |
|
value: 2.793131265571347 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
config: az |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 31.758574310692673 |
|
- type: f1 |
|
value: 30.162299253522708 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
config: bn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.5823806321452594 |
|
- type: f1 |
|
value: 1.0918434877949255 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
config: cy |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 28.94418291862811 |
|
- type: f1 |
|
value: 27.498874158049468 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
config: da |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 38.81977135171486 |
|
- type: f1 |
|
value: 36.44688565156101 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 45.22864828513786 |
|
- type: f1 |
|
value: 41.61460113481098 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
config: el |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 10.053799596503026 |
|
- type: f1 |
|
value: 5.1615743271775285 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 69.74445191661063 |
|
- type: f1 |
|
value: 67.00099408297854 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 45.31943510423672 |
|
- type: f1 |
|
value: 43.92469151179908 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
config: fa |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 3.5810356422326834 |
|
- type: f1 |
|
value: 0.8057464198110936 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
config: fi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 33.52387357094821 |
|
- type: f1 |
|
value: 30.686159550520415 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 51.13315400134499 |
|
- type: f1 |
|
value: 48.84533274433444 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
config: he |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.632817753866846 |
|
- type: f1 |
|
value: 0.7565304035292157 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.6798924008069935 |
|
- type: f1 |
|
value: 1.5577100383199163 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
config: hu |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 32.306657700067255 |
|
- type: f1 |
|
value: 29.508334412971788 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
config: hy |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 3.3254875588433084 |
|
- type: f1 |
|
value: 0.9498561670625558 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
config: id |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 35.497646267652996 |
|
- type: f1 |
|
value: 32.919473578262014 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
config: is |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 29.818426361802285 |
|
- type: f1 |
|
value: 27.968522255792134 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
config: it |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 45.585070611970416 |
|
- type: f1 |
|
value: 43.85609178763681 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
config: ja |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 3.6718224613315398 |
|
- type: f1 |
|
value: 1.5834733153849028 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
config: jv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 31.149966375252188 |
|
- type: f1 |
|
value: 28.77156087445068 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
config: ka |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.767316745124411 |
|
- type: f1 |
|
value: 1.0163373847923576 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
config: km |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 5.655682582380632 |
|
- type: f1 |
|
value: 1.6046205246119 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
config: kn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.5924680564895763 |
|
- type: f1 |
|
value: 1.3338404330308657 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
config: ko |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.3436449226630804 |
|
- type: f1 |
|
value: 0.5935093070394912 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
config: lv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 33.97108271687962 |
|
- type: f1 |
|
value: 33.35695453571926 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
config: ml |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.5453934095494284 |
|
- type: f1 |
|
value: 0.5515796181696971 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
config: mn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 14.704102219233356 |
|
- type: f1 |
|
value: 12.444230806799856 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
config: ms |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 33.12037659717552 |
|
- type: f1 |
|
value: 29.867258908899636 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
config: my |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 4.421654337592468 |
|
- type: f1 |
|
value: 1.3125497683444283 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
config: nb |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 38.53059852051109 |
|
- type: f1 |
|
value: 35.473185172465996 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
config: nl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 37.96234028244788 |
|
- type: f1 |
|
value: 34.24786837723274 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
config: pl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 34.40820443846672 |
|
- type: f1 |
|
value: 32.06121218840769 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
config: pt |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 43.35238735709483 |
|
- type: f1 |
|
value: 41.66578945324342 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
config: ro |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 42.68997982515131 |
|
- type: f1 |
|
value: 40.12799296163562 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
config: ru |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 14.815063887020846 |
|
- type: f1 |
|
value: 14.113147395663178 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
config: sl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 34.54270342972428 |
|
- type: f1 |
|
value: 32.556771565845736 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
config: sq |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 38.54068594485541 |
|
- type: f1 |
|
value: 34.63112962341627 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
config: sv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 35.978480161398785 |
|
- type: f1 |
|
value: 32.896757123025 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
config: sw |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 32.135171486213856 |
|
- type: f1 |
|
value: 30.338211408536065 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
config: ta |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.4055144586415602 |
|
- type: f1 |
|
value: 0.4241059307791662 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
config: te |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.501681237390719 |
|
- type: f1 |
|
value: 0.9247691466655827 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
config: th |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 3.7088096839273708 |
|
- type: f1 |
|
value: 1.7117159563540418 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
config: tl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 36.04236718224613 |
|
- type: f1 |
|
value: 31.848270154788448 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
config: tr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 33.765971755211844 |
|
- type: f1 |
|
value: 31.25189279882076 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
config: ur |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 2.992602555480834 |
|
- type: f1 |
|
value: 1.6243709826215067 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
config: vi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 22.61936785474109 |
|
- type: f1 |
|
value: 20.616493213131037 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.1163416274377942 |
|
- type: f1 |
|
value: 0.17708079483587733 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 4.6267652992602555 |
|
- type: f1 |
|
value: 1.8933559386335084 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
config: af |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 44.45191661062542 |
|
- type: f1 |
|
value: 40.78791900409084 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
config: am |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.508406186953598 |
|
- type: f1 |
|
value: 2.821623266241915 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
config: ar |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 12.323470073974445 |
|
- type: f1 |
|
value: 7.033060282091267 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
config: az |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 38.40954942837929 |
|
- type: f1 |
|
value: 35.118197115254915 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
config: bn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 8.453261600537996 |
|
- type: f1 |
|
value: 3.7954675930409887 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
config: cy |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 35.036987222595826 |
|
- type: f1 |
|
value: 32.66245000430742 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
config: da |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 48.35911230665769 |
|
- type: f1 |
|
value: 45.007102253202646 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 59.11903160726294 |
|
- type: f1 |
|
value: 56.29359157547811 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
config: el |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 17.679892400806995 |
|
- type: f1 |
|
value: 12.298039805650598 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 72.32347007397445 |
|
- type: f1 |
|
value: 71.44743919882103 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 55.61197041022192 |
|
- type: f1 |
|
value: 53.34238608745496 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
config: fa |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 6.859448554135844 |
|
- type: f1 |
|
value: 2.6611096235427603 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
config: fi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 41.34162743779422 |
|
- type: f1 |
|
value: 37.16587245902462 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 59.91930060524545 |
|
- type: f1 |
|
value: 58.82978451275059 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
config: he |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.864828513786147 |
|
- type: f1 |
|
value: 2.1478868713724184 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.6328177538668465 |
|
- type: f1 |
|
value: 4.359158983520571 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
config: hu |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 41.31136516476127 |
|
- type: f1 |
|
value: 37.56187834379295 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
config: hy |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 9.226630800268998 |
|
- type: f1 |
|
value: 4.272151036150232 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
config: id |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 44.64357767316745 |
|
- type: f1 |
|
value: 42.836643630228295 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
config: is |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 39.633490248823136 |
|
- type: f1 |
|
value: 35.97498169100485 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
config: it |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 54.57969065232011 |
|
- type: f1 |
|
value: 51.96887024053593 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
config: ja |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 4.956287827841291 |
|
- type: f1 |
|
value: 2.885322950712636 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
config: jv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 40.73301950235374 |
|
- type: f1 |
|
value: 37.77421393601645 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
config: ka |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.505043712172157 |
|
- type: f1 |
|
value: 2.885798319215117 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
config: km |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 8.732347007397442 |
|
- type: f1 |
|
value: 3.3227736931128002 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
config: kn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.985877605917954 |
|
- type: f1 |
|
value: 4.454873367911008 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
config: ko |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 6.028917283120376 |
|
- type: f1 |
|
value: 2.1947301613241064 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
config: lv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 36.415601882985875 |
|
- type: f1 |
|
value: 34.328528362740194 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
config: ml |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 6.960322797579018 |
|
- type: f1 |
|
value: 2.5948923502086636 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
config: mn |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 19.84868863483524 |
|
- type: f1 |
|
value: 16.571872313821913 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
config: ms |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 43.18090114324143 |
|
- type: f1 |
|
value: 39.21386548691514 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
config: my |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 9.462004034969738 |
|
- type: f1 |
|
value: 4.439617481980993 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
config: nb |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 46.60390047074647 |
|
- type: f1 |
|
value: 42.97761990856311 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
config: nl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 50.00336247478143 |
|
- type: f1 |
|
value: 45.623347729802326 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
config: pl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 42.29993275050437 |
|
- type: f1 |
|
value: 39.93988660787354 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
config: pt |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 52.23940820443846 |
|
- type: f1 |
|
value: 50.63740128715899 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
config: ro |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 53.69535978480161 |
|
- type: f1 |
|
value: 51.48099264354228 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
config: ru |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 20.68594485541358 |
|
- type: f1 |
|
value: 19.732532357173614 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
config: sl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 39.788164088769335 |
|
- type: f1 |
|
value: 37.63884763800779 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
config: sq |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 50.164761264290526 |
|
- type: f1 |
|
value: 46.40832635120166 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
config: sv |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 46.68796234028245 |
|
- type: f1 |
|
value: 42.65714705554807 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
config: sw |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 40.480833893745796 |
|
- type: f1 |
|
value: 37.28728896543833 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
config: ta |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.474781439139207 |
|
- type: f1 |
|
value: 2.114620869965788 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
config: te |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 6.866173503698722 |
|
- type: f1 |
|
value: 3.0078405064872755 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
config: th |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 8.258238063214526 |
|
- type: f1 |
|
value: 4.082391072869187 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
config: tl |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 48.93745796906523 |
|
- type: f1 |
|
value: 46.427786382184266 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
config: tr |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 41.82918628110289 |
|
- type: f1 |
|
value: 40.642360044818325 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
config: ur |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 9.767989240080698 |
|
- type: f1 |
|
value: 4.6812848634278925 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
config: vi |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 30.013449899125753 |
|
- type: f1 |
|
value: 28.091947569862718 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 4.169468728984533 |
|
- type: f1 |
|
value: 0.8211582847545612 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 7.908540685944855 |
|
- type: f1 |
|
value: 3.5358754800289534 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 33.20164128507875 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 26.13067187536383 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 30.196798710053223 |
|
- type: mrr |
|
value: 31.098179519159814 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.7010000000000005 |
|
- type: map_at_10 |
|
value: 9.756 |
|
- type: map_at_100 |
|
value: 12.631999999999998 |
|
- type: map_at_1000 |
|
value: 14.046 |
|
- type: map_at_3 |
|
value: 7.053 |
|
- type: map_at_5 |
|
value: 8.244 |
|
- type: ndcg_at_1 |
|
value: 35.604 |
|
- type: ndcg_at_10 |
|
value: 28.645 |
|
- type: ndcg_at_100 |
|
value: 27.431 |
|
- type: ndcg_at_1000 |
|
value: 36.378 |
|
- type: ndcg_at_3 |
|
value: 32.533 |
|
- type: ndcg_at_5 |
|
value: 30.737 |
|
- type: precision_at_1 |
|
value: 37.771 |
|
- type: precision_at_10 |
|
value: 21.517 |
|
- type: precision_at_100 |
|
value: 7.567 |
|
- type: precision_at_1000 |
|
value: 2.026 |
|
- type: precision_at_3 |
|
value: 30.753000000000004 |
|
- type: precision_at_5 |
|
value: 26.811 |
|
- type: recall_at_1 |
|
value: 4.7010000000000005 |
|
- type: recall_at_10 |
|
value: 14.302999999999999 |
|
- type: recall_at_100 |
|
value: 29.304000000000002 |
|
- type: recall_at_1000 |
|
value: 62.202999999999996 |
|
- type: recall_at_3 |
|
value: 8.419 |
|
- type: recall_at_5 |
|
value: 10.656 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.444000000000003 |
|
- type: map_at_10 |
|
value: 29.198 |
|
- type: map_at_100 |
|
value: 30.553 |
|
- type: map_at_1000 |
|
value: 30.614 |
|
- type: map_at_3 |
|
value: 24.992 |
|
- type: map_at_5 |
|
value: 27.322999999999997 |
|
- type: ndcg_at_1 |
|
value: 19.641000000000002 |
|
- type: ndcg_at_10 |
|
value: 36.324 |
|
- type: ndcg_at_100 |
|
value: 42.641 |
|
- type: ndcg_at_1000 |
|
value: 44.089 |
|
- type: ndcg_at_3 |
|
value: 28.000000000000004 |
|
- type: ndcg_at_5 |
|
value: 32.025 |
|
- type: precision_at_1 |
|
value: 19.641000000000002 |
|
- type: precision_at_10 |
|
value: 6.6339999999999995 |
|
- type: precision_at_100 |
|
value: 1.024 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 13.209999999999999 |
|
- type: precision_at_5 |
|
value: 10.162 |
|
- type: recall_at_1 |
|
value: 17.444000000000003 |
|
- type: recall_at_10 |
|
value: 56.230999999999995 |
|
- type: recall_at_100 |
|
value: 84.61800000000001 |
|
- type: recall_at_1000 |
|
value: 95.416 |
|
- type: recall_at_3 |
|
value: 34.245999999999995 |
|
- type: recall_at_5 |
|
value: 43.617 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 67.604 |
|
- type: map_at_10 |
|
value: 81.364 |
|
- type: map_at_100 |
|
value: 82.092 |
|
- type: map_at_1000 |
|
value: 82.112 |
|
- type: map_at_3 |
|
value: 78.321 |
|
- type: map_at_5 |
|
value: 80.203 |
|
- type: ndcg_at_1 |
|
value: 77.92 |
|
- type: ndcg_at_10 |
|
value: 85.491 |
|
- type: ndcg_at_100 |
|
value: 87.102 |
|
- type: ndcg_at_1000 |
|
value: 87.246 |
|
- type: ndcg_at_3 |
|
value: 82.219 |
|
- type: ndcg_at_5 |
|
value: 83.991 |
|
- type: precision_at_1 |
|
value: 77.92 |
|
- type: precision_at_10 |
|
value: 13.065 |
|
- type: precision_at_100 |
|
value: 1.525 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 35.96 |
|
- type: precision_at_5 |
|
value: 23.785999999999998 |
|
- type: recall_at_1 |
|
value: 67.604 |
|
- type: recall_at_10 |
|
value: 93.57 |
|
- type: recall_at_100 |
|
value: 99.20400000000001 |
|
- type: recall_at_1000 |
|
value: 99.958 |
|
- type: recall_at_3 |
|
value: 84.38900000000001 |
|
- type: recall_at_5 |
|
value: 89.223 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 52.930534839708464 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 59.6686566444821 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.267 |
|
- type: map_at_10 |
|
value: 8.061 |
|
- type: map_at_100 |
|
value: 9.66 |
|
- type: map_at_1000 |
|
value: 9.926 |
|
- type: map_at_3 |
|
value: 5.733 |
|
- type: map_at_5 |
|
value: 6.894 |
|
- type: ndcg_at_1 |
|
value: 16.0 |
|
- type: ndcg_at_10 |
|
value: 14.155000000000001 |
|
- type: ndcg_at_100 |
|
value: 20.973 |
|
- type: ndcg_at_1000 |
|
value: 26.163999999999998 |
|
- type: ndcg_at_3 |
|
value: 12.994 |
|
- type: ndcg_at_5 |
|
value: 11.58 |
|
- type: precision_at_1 |
|
value: 16.0 |
|
- type: precision_at_10 |
|
value: 7.470000000000001 |
|
- type: precision_at_100 |
|
value: 1.7389999999999999 |
|
- type: precision_at_1000 |
|
value: 0.299 |
|
- type: precision_at_3 |
|
value: 12.167 |
|
- type: precision_at_5 |
|
value: 10.280000000000001 |
|
- type: recall_at_1 |
|
value: 3.267 |
|
- type: recall_at_10 |
|
value: 15.152 |
|
- type: recall_at_100 |
|
value: 35.248000000000005 |
|
- type: recall_at_1000 |
|
value: 60.742 |
|
- type: recall_at_3 |
|
value: 7.4319999999999995 |
|
- type: recall_at_5 |
|
value: 10.452 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.12684378047692 |
|
- type: cos_sim_spearman |
|
value: 80.18231249099851 |
|
- type: euclidean_pearson |
|
value: 81.10311004134292 |
|
- type: euclidean_spearman |
|
value: 80.18231162371262 |
|
- type: manhattan_pearson |
|
value: 81.06660654194627 |
|
- type: manhattan_spearman |
|
value: 80.15421301055235 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.39022108792102 |
|
- type: cos_sim_spearman |
|
value: 78.0511871449349 |
|
- type: euclidean_pearson |
|
value: 83.55414895785707 |
|
- type: euclidean_spearman |
|
value: 78.04999900363751 |
|
- type: manhattan_pearson |
|
value: 83.58122709700247 |
|
- type: manhattan_spearman |
|
value: 78.09617051485085 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.20665643089602 |
|
- type: cos_sim_spearman |
|
value: 85.84897342040492 |
|
- type: euclidean_pearson |
|
value: 85.07344348481206 |
|
- type: euclidean_spearman |
|
value: 85.84897334409469 |
|
- type: manhattan_pearson |
|
value: 85.05095172720918 |
|
- type: manhattan_spearman |
|
value: 85.82539599484174 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.89550144541676 |
|
- type: cos_sim_spearman |
|
value: 82.18926664662587 |
|
- type: euclidean_pearson |
|
value: 83.2979886572065 |
|
- type: euclidean_spearman |
|
value: 82.18927470901535 |
|
- type: manhattan_pearson |
|
value: 83.26470031355984 |
|
- type: manhattan_spearman |
|
value: 82.18712042624048 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.24309164032012 |
|
- type: cos_sim_spearman |
|
value: 87.45860981918769 |
|
- type: euclidean_pearson |
|
value: 87.04473506428359 |
|
- type: euclidean_spearman |
|
value: 87.45861561864089 |
|
- type: manhattan_pearson |
|
value: 87.02002615328881 |
|
- type: manhattan_spearman |
|
value: 87.43661746711435 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.24202172291855 |
|
- type: cos_sim_spearman |
|
value: 84.03233567112525 |
|
- type: euclidean_pearson |
|
value: 83.5361433714169 |
|
- type: euclidean_spearman |
|
value: 84.03233506665642 |
|
- type: manhattan_pearson |
|
value: 83.51738829906122 |
|
- type: manhattan_spearman |
|
value: 84.02036537979589 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 9.160685666083912 |
|
- type: cos_sim_spearman |
|
value: 10.0553422118037 |
|
- type: euclidean_pearson |
|
value: 9.589155152132493 |
|
- type: euclidean_spearman |
|
value: 10.215143153291868 |
|
- type: manhattan_pearson |
|
value: 9.570908402796292 |
|
- type: manhattan_spearman |
|
value: 10.214075999964175 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 10.60353259635145 |
|
- type: cos_sim_spearman |
|
value: 13.355557088500165 |
|
- type: euclidean_pearson |
|
value: 14.636463268109537 |
|
- type: euclidean_spearman |
|
value: 14.35296057730866 |
|
- type: manhattan_pearson |
|
value: 14.553161459629774 |
|
- type: manhattan_spearman |
|
value: 14.267005982719008 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: -4.869359628676264 |
|
- type: cos_sim_spearman |
|
value: -5.6460908267056835 |
|
- type: euclidean_pearson |
|
value: -4.9763689688023245 |
|
- type: euclidean_spearman |
|
value: -5.642707032163295 |
|
- type: manhattan_pearson |
|
value: -2.1980242988428276 |
|
- type: manhattan_spearman |
|
value: -1.854801657544592 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.79239834758799 |
|
- type: cos_sim_spearman |
|
value: 67.11298548130333 |
|
- type: euclidean_pearson |
|
value: 66.77948456698994 |
|
- type: euclidean_spearman |
|
value: 67.11298548130333 |
|
- type: manhattan_pearson |
|
value: 66.5459479074496 |
|
- type: manhattan_spearman |
|
value: 66.85517071449804 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.5692743691406 |
|
- type: cos_sim_spearman |
|
value: 89.56885540021487 |
|
- type: euclidean_pearson |
|
value: 89.78111903652413 |
|
- type: euclidean_spearman |
|
value: 89.56885540021487 |
|
- type: manhattan_pearson |
|
value: 89.68974590722112 |
|
- type: manhattan_spearman |
|
value: 89.40694757290255 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 2.5434531383947427 |
|
- type: cos_sim_spearman |
|
value: -0.015686409614414636 |
|
- type: euclidean_pearson |
|
value: 3.3562612023763454 |
|
- type: euclidean_spearman |
|
value: -0.015686409614414636 |
|
- type: manhattan_pearson |
|
value: 3.06029066490911 |
|
- type: manhattan_spearman |
|
value: 0.9087736864115655 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 48.19554059380143 |
|
- type: cos_sim_spearman |
|
value: 47.72387836409936 |
|
- type: euclidean_pearson |
|
value: 48.566966490440386 |
|
- type: euclidean_spearman |
|
value: 47.72387836409936 |
|
- type: manhattan_pearson |
|
value: 48.47970171544757 |
|
- type: manhattan_spearman |
|
value: 48.06448477123342 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.72325991736295 |
|
- type: cos_sim_spearman |
|
value: 79.94411571627043 |
|
- type: euclidean_pearson |
|
value: 81.66909260117279 |
|
- type: euclidean_spearman |
|
value: 79.94284742229813 |
|
- type: manhattan_pearson |
|
value: 81.78261278000369 |
|
- type: manhattan_spearman |
|
value: 80.18524960358721 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 57.385906804319916 |
|
- type: cos_sim_spearman |
|
value: 56.60927284389835 |
|
- type: euclidean_pearson |
|
value: 58.220472472555414 |
|
- type: euclidean_spearman |
|
value: 56.60927284389835 |
|
- type: manhattan_pearson |
|
value: 57.974972842168704 |
|
- type: manhattan_spearman |
|
value: 56.38609220634484 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 33.56148532200449 |
|
- type: cos_sim_spearman |
|
value: 30.46169688812801 |
|
- type: euclidean_pearson |
|
value: 34.03749511332228 |
|
- type: euclidean_spearman |
|
value: 30.46169688812801 |
|
- type: manhattan_pearson |
|
value: 33.51842606041771 |
|
- type: manhattan_spearman |
|
value: 30.87826743052681 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 37.01008110523631 |
|
- type: cos_sim_spearman |
|
value: 36.46124293832437 |
|
- type: euclidean_pearson |
|
value: 37.860431566730725 |
|
- type: euclidean_spearman |
|
value: 36.46124293832437 |
|
- type: manhattan_pearson |
|
value: 37.84974555851177 |
|
- type: manhattan_spearman |
|
value: 37.026498066678556 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 56.563590445291226 |
|
- type: cos_sim_spearman |
|
value: 62.65994888539158 |
|
- type: euclidean_pearson |
|
value: 61.43083003163841 |
|
- type: euclidean_spearman |
|
value: 62.65994888539158 |
|
- type: manhattan_pearson |
|
value: 61.530512036243564 |
|
- type: manhattan_spearman |
|
value: 62.65300646176863 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 28.29024604941182 |
|
- type: cos_sim_spearman |
|
value: 42.084625834786046 |
|
- type: euclidean_pearson |
|
value: 30.271611311423545 |
|
- type: euclidean_spearman |
|
value: 42.084625834786046 |
|
- type: manhattan_pearson |
|
value: 30.19034939394144 |
|
- type: manhattan_spearman |
|
value: 42.02260224541176 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 42.79846662914459 |
|
- type: cos_sim_spearman |
|
value: 53.8129210907069 |
|
- type: euclidean_pearson |
|
value: 48.21779716691527 |
|
- type: euclidean_spearman |
|
value: 53.8129210907069 |
|
- type: manhattan_pearson |
|
value: 48.35900342355713 |
|
- type: manhattan_spearman |
|
value: 53.94896150957018 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 9.818882867657061 |
|
- type: cos_sim_spearman |
|
value: 24.41994279795319 |
|
- type: euclidean_pearson |
|
value: 4.813919367736767 |
|
- type: euclidean_spearman |
|
value: 24.41994279795319 |
|
- type: manhattan_pearson |
|
value: 4.602063702670144 |
|
- type: manhattan_spearman |
|
value: 24.218951967147824 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.410972788257048 |
|
- type: cos_sim_spearman |
|
value: 40.44872572093327 |
|
- type: euclidean_pearson |
|
value: 33.742359285090565 |
|
- type: euclidean_spearman |
|
value: 40.44872572093327 |
|
- type: manhattan_pearson |
|
value: 33.90231904900396 |
|
- type: manhattan_spearman |
|
value: 40.19149257794821 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.3322380268429 |
|
- type: cos_sim_spearman |
|
value: 31.200490449337714 |
|
- type: euclidean_pearson |
|
value: 32.130848968646525 |
|
- type: euclidean_spearman |
|
value: 31.200490449337714 |
|
- type: manhattan_pearson |
|
value: 32.14834980954443 |
|
- type: manhattan_spearman |
|
value: 31.427049121627025 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 3.4365537430337683 |
|
- type: cos_sim_spearman |
|
value: 12.125486695771288 |
|
- type: euclidean_pearson |
|
value: 8.134889656987513 |
|
- type: euclidean_spearman |
|
value: 12.125486695771288 |
|
- type: manhattan_pearson |
|
value: 8.163310600014055 |
|
- type: manhattan_spearman |
|
value: 12.129258700591722 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.320332340418773 |
|
- type: cos_sim_spearman |
|
value: 32.900042162025 |
|
- type: euclidean_pearson |
|
value: 30.195166197236723 |
|
- type: euclidean_spearman |
|
value: 32.900041812396196 |
|
- type: manhattan_pearson |
|
value: 30.146557575933087 |
|
- type: manhattan_spearman |
|
value: 32.96907086076731 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.2830779511937 |
|
- type: cos_sim_spearman |
|
value: 77.68846630995027 |
|
- type: euclidean_pearson |
|
value: 73.034747757096 |
|
- type: euclidean_spearman |
|
value: 77.68846630995027 |
|
- type: manhattan_pearson |
|
value: 73.03548141166142 |
|
- type: manhattan_spearman |
|
value: 77.65745427658017 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 39.71606949409573 |
|
- type: cos_sim_spearman |
|
value: 46.8990508231622 |
|
- type: euclidean_pearson |
|
value: 46.606091669710025 |
|
- type: euclidean_spearman |
|
value: 46.8990508231622 |
|
- type: manhattan_pearson |
|
value: 46.39554347396642 |
|
- type: manhattan_spearman |
|
value: 46.59771734872816 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.53158773665186 |
|
- type: cos_sim_spearman |
|
value: 65.18822674266846 |
|
- type: euclidean_pearson |
|
value: 58.19324925326185 |
|
- type: euclidean_spearman |
|
value: 65.18822674266846 |
|
- type: manhattan_pearson |
|
value: 57.83750769005698 |
|
- type: manhattan_spearman |
|
value: 65.02074812497972 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 56.77648080772914 |
|
- type: cos_sim_spearman |
|
value: 60.64694762935356 |
|
- type: euclidean_pearson |
|
value: 58.1456140359783 |
|
- type: euclidean_spearman |
|
value: 60.64694762935356 |
|
- type: manhattan_pearson |
|
value: 58.03342495626636 |
|
- type: manhattan_spearman |
|
value: 60.384166246014914 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 47.2314368564716 |
|
- type: cos_sim_spearman |
|
value: 42.96651621279448 |
|
- type: euclidean_pearson |
|
value: 47.136522518411184 |
|
- type: euclidean_spearman |
|
value: 42.96651621279448 |
|
- type: manhattan_pearson |
|
value: 48.71469489220069 |
|
- type: manhattan_spearman |
|
value: 44.518895193324646 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 25.589949160802995 |
|
- type: cos_sim_spearman |
|
value: 20.153084379882284 |
|
- type: euclidean_pearson |
|
value: 26.82363451623337 |
|
- type: euclidean_spearman |
|
value: 20.153084379882284 |
|
- type: manhattan_pearson |
|
value: 25.843715884495634 |
|
- type: manhattan_spearman |
|
value: 18.901328744286676 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 48.45790617159233 |
|
- type: cos_sim_spearman |
|
value: 55.28609467652911 |
|
- type: euclidean_pearson |
|
value: 51.88464425822175 |
|
- type: euclidean_spearman |
|
value: 55.28609467652911 |
|
- type: manhattan_pearson |
|
value: 51.815736921803136 |
|
- type: manhattan_spearman |
|
value: 55.33932627352348 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.7093430670243 |
|
- type: cos_sim_spearman |
|
value: 55.04493953270152 |
|
- type: euclidean_pearson |
|
value: 47.90591946944973 |
|
- type: euclidean_spearman |
|
value: 55.04493953270152 |
|
- type: manhattan_pearson |
|
value: 47.964230618301606 |
|
- type: manhattan_spearman |
|
value: 56.09186738739794 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 25.093485946833393 |
|
- type: cos_sim_spearman |
|
value: 33.93510205658959 |
|
- type: euclidean_pearson |
|
value: 27.454896639869027 |
|
- type: euclidean_spearman |
|
value: 33.93510205658959 |
|
- type: manhattan_pearson |
|
value: 24.299109196300538 |
|
- type: manhattan_spearman |
|
value: 32.51857329560673 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 40.9753045484768 |
|
- type: cos_sim_spearman |
|
value: 28.17180849095055 |
|
- type: euclidean_pearson |
|
value: 40.382800203298906 |
|
- type: euclidean_spearman |
|
value: 28.17180849095055 |
|
- type: manhattan_pearson |
|
value: 34.084425723423486 |
|
- type: manhattan_spearman |
|
value: 28.17180849095055 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.76003618726351 |
|
- type: cos_sim_spearman |
|
value: 85.52030817522575 |
|
- type: euclidean_pearson |
|
value: 85.5039926987335 |
|
- type: euclidean_spearman |
|
value: 85.52030817522575 |
|
- type: manhattan_pearson |
|
value: 85.51493965359182 |
|
- type: manhattan_spearman |
|
value: 85.52189380846832 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 73.96228332723271 |
|
- type: mrr |
|
value: 91.34847813769382 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.372 |
|
- type: map_at_10 |
|
value: 41.02 |
|
- type: map_at_100 |
|
value: 41.907 |
|
- type: map_at_1000 |
|
value: 41.967 |
|
- type: map_at_3 |
|
value: 38.244 |
|
- type: map_at_5 |
|
value: 39.786 |
|
- type: ndcg_at_1 |
|
value: 34.666999999999994 |
|
- type: ndcg_at_10 |
|
value: 45.76 |
|
- type: ndcg_at_100 |
|
value: 50.163999999999994 |
|
- type: ndcg_at_1000 |
|
value: 51.956 |
|
- type: ndcg_at_3 |
|
value: 40.687 |
|
- type: ndcg_at_5 |
|
value: 43.143 |
|
- type: precision_at_1 |
|
value: 34.666999999999994 |
|
- type: precision_at_10 |
|
value: 6.7 |
|
- type: precision_at_100 |
|
value: 0.907 |
|
- type: precision_at_1000 |
|
value: 0.107 |
|
- type: precision_at_3 |
|
value: 16.667 |
|
- type: precision_at_5 |
|
value: 11.466999999999999 |
|
- type: recall_at_1 |
|
value: 32.372 |
|
- type: recall_at_10 |
|
value: 59.061 |
|
- type: recall_at_100 |
|
value: 79.733 |
|
- type: recall_at_1000 |
|
value: 94.167 |
|
- type: recall_at_3 |
|
value: 45.161 |
|
- type: recall_at_5 |
|
value: 51.439 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.6960396039604 |
|
- type: cos_sim_ap |
|
value: 91.22814257221482 |
|
- type: cos_sim_f1 |
|
value: 84.43775100401606 |
|
- type: cos_sim_precision |
|
value: 84.77822580645162 |
|
- type: cos_sim_recall |
|
value: 84.1 |
|
- type: dot_accuracy |
|
value: 99.6960396039604 |
|
- type: dot_ap |
|
value: 91.22814257221482 |
|
- type: dot_f1 |
|
value: 84.43775100401606 |
|
- type: dot_precision |
|
value: 84.77822580645162 |
|
- type: dot_recall |
|
value: 84.1 |
|
- type: euclidean_accuracy |
|
value: 99.6960396039604 |
|
- type: euclidean_ap |
|
value: 91.22814257221482 |
|
- type: euclidean_f1 |
|
value: 84.43775100401606 |
|
- type: euclidean_precision |
|
value: 84.77822580645162 |
|
- type: euclidean_recall |
|
value: 84.1 |
|
- type: manhattan_accuracy |
|
value: 99.6960396039604 |
|
- type: manhattan_ap |
|
value: 91.18887077921163 |
|
- type: manhattan_f1 |
|
value: 84.27991886409735 |
|
- type: manhattan_precision |
|
value: 85.49382716049382 |
|
- type: manhattan_recall |
|
value: 83.1 |
|
- type: max_accuracy |
|
value: 99.6960396039604 |
|
- type: max_ap |
|
value: 91.22814257221482 |
|
- type: max_f1 |
|
value: 84.43775100401606 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 63.13072579524015 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 35.681141375580225 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map |
|
value: 48.46269194141537 |
|
- type: mrr |
|
value: 49.11958343943638 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.709572612837498 |
|
- type: cos_sim_spearman |
|
value: 31.3940211538976 |
|
- type: dot_pearson |
|
value: 30.709578240668765 |
|
- type: dot_spearman |
|
value: 31.3940211538976 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.151 |
|
- type: map_at_10 |
|
value: 0.822 |
|
- type: map_at_100 |
|
value: 4.846 |
|
- type: map_at_1000 |
|
value: 13.117 |
|
- type: map_at_3 |
|
value: 0.349 |
|
- type: map_at_5 |
|
value: 0.49500000000000005 |
|
- type: ndcg_at_1 |
|
value: 48.0 |
|
- type: ndcg_at_10 |
|
value: 40.699000000000005 |
|
- type: ndcg_at_100 |
|
value: 35.455 |
|
- type: ndcg_at_1000 |
|
value: 35.067 |
|
- type: ndcg_at_3 |
|
value: 44.519999999999996 |
|
- type: ndcg_at_5 |
|
value: 42.697 |
|
- type: precision_at_1 |
|
value: 54.0 |
|
- type: precision_at_10 |
|
value: 44.0 |
|
- type: precision_at_100 |
|
value: 37.72 |
|
- type: precision_at_1000 |
|
value: 16.302 |
|
- type: precision_at_3 |
|
value: 50.0 |
|
- type: precision_at_5 |
|
value: 47.199999999999996 |
|
- type: recall_at_1 |
|
value: 0.151 |
|
- type: recall_at_10 |
|
value: 1.109 |
|
- type: recall_at_100 |
|
value: 8.644 |
|
- type: recall_at_1000 |
|
value: 34.566 |
|
- type: recall_at_3 |
|
value: 0.394 |
|
- type: recall_at_5 |
|
value: 0.601 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.786 |
|
- type: map_at_10 |
|
value: 8.379 |
|
- type: map_at_100 |
|
value: 13.618 |
|
- type: map_at_1000 |
|
value: 15.15 |
|
- type: map_at_3 |
|
value: 3.7900000000000005 |
|
- type: map_at_5 |
|
value: 6.1530000000000005 |
|
- type: ndcg_at_1 |
|
value: 19.387999999999998 |
|
- type: ndcg_at_10 |
|
value: 20.296 |
|
- type: ndcg_at_100 |
|
value: 31.828 |
|
- type: ndcg_at_1000 |
|
value: 43.968 |
|
- type: ndcg_at_3 |
|
value: 19.583000000000002 |
|
- type: ndcg_at_5 |
|
value: 21.066 |
|
- type: precision_at_1 |
|
value: 22.448999999999998 |
|
- type: precision_at_10 |
|
value: 19.592000000000002 |
|
- type: precision_at_100 |
|
value: 7.041 |
|
- type: precision_at_1000 |
|
value: 1.49 |
|
- type: precision_at_3 |
|
value: 22.448999999999998 |
|
- type: precision_at_5 |
|
value: 24.490000000000002 |
|
- type: recall_at_1 |
|
value: 1.786 |
|
- type: recall_at_10 |
|
value: 14.571000000000002 |
|
- type: recall_at_100 |
|
value: 44.247 |
|
- type: recall_at_1000 |
|
value: 80.36 |
|
- type: recall_at_3 |
|
value: 5.117 |
|
- type: recall_at_5 |
|
value: 9.449 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 68.19919999999999 |
|
- type: ap |
|
value: 14.328836562980976 |
|
- type: f1 |
|
value: 53.33893474325896 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 62.71080928126768 |
|
- type: f1 |
|
value: 62.35221892617029 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
metrics: |
|
- type: v_measure |
|
value: 48.099101871064484 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.60207426834357 |
|
- type: cos_sim_ap |
|
value: 78.25096573546108 |
|
- type: cos_sim_f1 |
|
value: 71.740233384069 |
|
- type: cos_sim_precision |
|
value: 69.07669760625306 |
|
- type: cos_sim_recall |
|
value: 74.6174142480211 |
|
- type: dot_accuracy |
|
value: 87.60207426834357 |
|
- type: dot_ap |
|
value: 78.25097910093768 |
|
- type: dot_f1 |
|
value: 71.740233384069 |
|
- type: dot_precision |
|
value: 69.07669760625306 |
|
- type: dot_recall |
|
value: 74.6174142480211 |
|
- type: euclidean_accuracy |
|
value: 87.60207426834357 |
|
- type: euclidean_ap |
|
value: 78.25097099603116 |
|
- type: euclidean_f1 |
|
value: 71.740233384069 |
|
- type: euclidean_precision |
|
value: 69.07669760625306 |
|
- type: euclidean_recall |
|
value: 74.6174142480211 |
|
- type: manhattan_accuracy |
|
value: 87.61399535077786 |
|
- type: manhattan_ap |
|
value: 78.238484943708 |
|
- type: manhattan_f1 |
|
value: 71.77797490812317 |
|
- type: manhattan_precision |
|
value: 69.05632772494513 |
|
- type: manhattan_recall |
|
value: 74.72295514511873 |
|
- type: max_accuracy |
|
value: 87.61399535077786 |
|
- type: max_ap |
|
value: 78.25097910093768 |
|
- type: max_f1 |
|
value: 71.77797490812317 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.17413746264602 |
|
- type: cos_sim_ap |
|
value: 86.04575990028458 |
|
- type: cos_sim_f1 |
|
value: 78.52034894604814 |
|
- type: cos_sim_precision |
|
value: 76.42300123897675 |
|
- type: cos_sim_recall |
|
value: 80.73606405913151 |
|
- type: dot_accuracy |
|
value: 89.17413746264602 |
|
- type: dot_ap |
|
value: 86.04575880500646 |
|
- type: dot_f1 |
|
value: 78.52034894604814 |
|
- type: dot_precision |
|
value: 76.42300123897675 |
|
- type: dot_recall |
|
value: 80.73606405913151 |
|
- type: euclidean_accuracy |
|
value: 89.17413746264602 |
|
- type: euclidean_ap |
|
value: 86.04575106124874 |
|
- type: euclidean_f1 |
|
value: 78.52034894604814 |
|
- type: euclidean_precision |
|
value: 76.42300123897675 |
|
- type: euclidean_recall |
|
value: 80.73606405913151 |
|
- type: manhattan_accuracy |
|
value: 89.14891139830016 |
|
- type: manhattan_ap |
|
value: 86.01748033351211 |
|
- type: manhattan_f1 |
|
value: 78.48817724818471 |
|
- type: manhattan_precision |
|
value: 76.00057690920892 |
|
- type: manhattan_recall |
|
value: 81.14413304588851 |
|
- type: max_accuracy |
|
value: 89.17413746264602 |
|
- type: max_ap |
|
value: 86.04575990028458 |
|
- type: max_f1 |
|
value: 78.52034894604814 |
|
--- |
|
|
|
# sentence-transformers/sentence-t5-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks. |
|
|
|
This model was converted from the Tensorflow model [st5-base-1](https://tfhub.dev/google/sentence-t5/st5-base/1) to PyTorch. When using this model, have a look at the publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results. |
|
|
|
The model uses only the encoder from a T5-base model. The weights are stored in FP16. |
|
|
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('sentence-transformers/sentence-t5-base') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
The model requires sentence-transformers version 2.2.0 or newer. |
|
|
|
## Evaluation Results |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/sentence-t5-base) |
|
|
|
|
|
|
|
## Citing & Authors |
|
|
|
If you find this model helpful, please cite the respective publication: |
|
[Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877) |
|
|