sentence-t5-base / README.md
Muennighoff's picture
Add MTEB
81c83ad
|
raw
history blame
103 kB
---
pipeline_tag: sentence-similarity
language: en
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: sentence-t5-base
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 75.82089552238807
- type: ap
value: 40.58809426967639
- type: f1
value: 70.5050115572668
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 69.97858672376874
- type: ap
value: 80.89622545806847
- type: f1
value: 68.09770164363411
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en-ext)
config: en-ext
split: test
metrics:
- type: accuracy
value: 76.80659670164917
- type: ap
value: 26.663544686227127
- type: f1
value: 64.52406535274052
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (ja)
config: ja
split: test
metrics:
- type: accuracy
value: 46.04925053533191
- type: ap
value: 10.574096802771448
- type: f1
value: 36.74441737116304
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
metrics:
- type: accuracy
value: 85.11737500000001
- type: ap
value: 81.28435308927632
- type: f1
value: 85.01612484917347
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 44.943999999999996
- type: f1
value: 42.681783855948844
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 37.895999999999994
- type: f1
value: 35.428429230946115
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (es)
config: es
split: test
metrics:
- type: accuracy
value: 37.328
- type: f1
value: 34.26335456752553
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (fr)
config: fr
split: test
metrics:
- type: accuracy
value: 37.35
- type: f1
value: 34.644931974230495
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (ja)
config: ja
split: test
metrics:
- type: accuracy
value: 22.290000000000003
- type: f1
value: 20.438677904046305
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
metrics:
- type: accuracy
value: 21.529999999999998
- type: f1
value: 18.273004097867844
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
metrics:
- type: map_at_1
value: 21.906
- type: map_at_10
value: 35.993
- type: map_at_100
value: 37.14
- type: map_at_1000
value: 37.153999999999996
- type: map_at_3
value: 30.642000000000003
- type: map_at_5
value: 33.534000000000006
- type: ndcg_at_1
value: 21.906
- type: ndcg_at_10
value: 44.846000000000004
- type: ndcg_at_100
value: 49.95
- type: ndcg_at_1000
value: 50.29
- type: ndcg_at_3
value: 33.579
- type: ndcg_at_5
value: 38.807
- type: precision_at_1
value: 21.906
- type: precision_at_10
value: 7.367999999999999
- type: precision_at_100
value: 0.966
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 14.035
- type: precision_at_5
value: 10.967
- type: recall_at_1
value: 21.906
- type: recall_at_10
value: 73.68400000000001
- type: recall_at_100
value: 96.586
- type: recall_at_1000
value: 99.14699999999999
- type: recall_at_3
value: 42.105
- type: recall_at_5
value: 54.836
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
metrics:
- type: v_measure
value: 39.27529166223639
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
metrics:
- type: v_measure
value: 27.261128959373327
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
metrics:
- type: map
value: 59.72875661091822
- type: mrr
value: 72.76997317856043
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 75.50587493517146
- type: cos_sim_spearman
value: 75.89088585182279
- type: euclidean_pearson
value: 75.74627833999679
- type: euclidean_spearman
value: 75.89088585182279
- type: manhattan_pearson
value: 76.10746255262428
- type: manhattan_spearman
value: 75.93968214440233
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
metrics:
- type: accuracy
value: 76.47727272727273
- type: f1
value: 75.41900393828456
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
metrics:
- type: v_measure
value: 33.98533095653499
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
metrics:
- type: v_measure
value: 22.921149832439514
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 27.97
- type: map_at_10
value: 39.523
- type: map_at_100
value: 41.101
- type: map_at_1000
value: 41.221000000000004
- type: map_at_3
value: 36.193999999999996
- type: map_at_5
value: 37.952000000000005
- type: ndcg_at_1
value: 34.621
- type: ndcg_at_10
value: 46.18
- type: ndcg_at_100
value: 51.93600000000001
- type: ndcg_at_1000
value: 53.833
- type: ndcg_at_3
value: 41.091
- type: ndcg_at_5
value: 43.230000000000004
- type: precision_at_1
value: 34.621
- type: precision_at_10
value: 9.041
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.19499999999999998
- type: precision_at_3
value: 20.029
- type: precision_at_5
value: 14.335
- type: recall_at_1
value: 27.97
- type: recall_at_10
value: 59.325
- type: recall_at_100
value: 82.917
- type: recall_at_1000
value: 95.175
- type: recall_at_3
value: 44.251000000000005
- type: recall_at_5
value: 50.383
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 23.701
- type: map_at_10
value: 32.094
- type: map_at_100
value: 33.293
- type: map_at_1000
value: 33.434999999999995
- type: map_at_3
value: 29.609999999999996
- type: map_at_5
value: 31.16
- type: ndcg_at_1
value: 30.573
- type: ndcg_at_10
value: 37.031
- type: ndcg_at_100
value: 42.001
- type: ndcg_at_1000
value: 44.714
- type: ndcg_at_3
value: 33.434999999999995
- type: ndcg_at_5
value: 35.356
- type: precision_at_1
value: 30.573
- type: precision_at_10
value: 6.854
- type: precision_at_100
value: 1.192
- type: precision_at_1000
value: 0.174
- type: precision_at_3
value: 16.178
- type: precision_at_5
value: 11.567
- type: recall_at_1
value: 23.701
- type: recall_at_10
value: 45.755
- type: recall_at_100
value: 67.035
- type: recall_at_1000
value: 84.893
- type: recall_at_3
value: 34.977999999999994
- type: recall_at_5
value: 40.357
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 35.617
- type: map_at_10
value: 47.774
- type: map_at_100
value: 48.943999999999996
- type: map_at_1000
value: 49.007
- type: map_at_3
value: 44.214999999999996
- type: map_at_5
value: 46.291
- type: ndcg_at_1
value: 40.627
- type: ndcg_at_10
value: 53.952
- type: ndcg_at_100
value: 58.55200000000001
- type: ndcg_at_1000
value: 59.824
- type: ndcg_at_3
value: 47.911
- type: ndcg_at_5
value: 50.966
- type: precision_at_1
value: 40.627
- type: precision_at_10
value: 8.884
- type: precision_at_100
value: 1.213
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 21.337999999999997
- type: precision_at_5
value: 15.034
- type: recall_at_1
value: 35.617
- type: recall_at_10
value: 68.73599999999999
- type: recall_at_100
value: 88.42999999999999
- type: recall_at_1000
value: 97.455
- type: recall_at_3
value: 52.915
- type: recall_at_5
value: 60.182
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 21.029999999999998
- type: map_at_10
value: 27.915
- type: map_at_100
value: 28.924
- type: map_at_1000
value: 29.023
- type: map_at_3
value: 25.634
- type: map_at_5
value: 26.934
- type: ndcg_at_1
value: 22.599
- type: ndcg_at_10
value: 32.340999999999994
- type: ndcg_at_100
value: 37.422
- type: ndcg_at_1000
value: 40.014
- type: ndcg_at_3
value: 27.604
- type: ndcg_at_5
value: 29.872
- type: precision_at_1
value: 22.599
- type: precision_at_10
value: 5.051
- type: precision_at_100
value: 0.799
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 11.562999999999999
- type: precision_at_5
value: 8.225999999999999
- type: recall_at_1
value: 21.029999999999998
- type: recall_at_10
value: 44.226
- type: recall_at_100
value: 67.902
- type: recall_at_1000
value: 87.497
- type: recall_at_3
value: 31.389
- type: recall_at_5
value: 36.888
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 12.592
- type: map_at_10
value: 20.054
- type: map_at_100
value: 21.384
- type: map_at_1000
value: 21.52
- type: map_at_3
value: 17.718999999999998
- type: map_at_5
value: 19.189999999999998
- type: ndcg_at_1
value: 15.299
- type: ndcg_at_10
value: 24.698
- type: ndcg_at_100
value: 31.080000000000002
- type: ndcg_at_1000
value: 34.266000000000005
- type: ndcg_at_3
value: 20.331
- type: ndcg_at_5
value: 22.735
- type: precision_at_1
value: 15.299
- type: precision_at_10
value: 4.776
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 10.033
- type: precision_at_5
value: 7.761
- type: recall_at_1
value: 12.592
- type: recall_at_10
value: 35.386
- type: recall_at_100
value: 63.412
- type: recall_at_1000
value: 86.20400000000001
- type: recall_at_3
value: 23.768
- type: recall_at_5
value: 29.557
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 23.549
- type: map_at_10
value: 32.875
- type: map_at_100
value: 34.247
- type: map_at_1000
value: 34.374
- type: map_at_3
value: 29.774
- type: map_at_5
value: 31.535000000000004
- type: ndcg_at_1
value: 28.874
- type: ndcg_at_10
value: 38.801
- type: ndcg_at_100
value: 44.727
- type: ndcg_at_1000
value: 47.154
- type: ndcg_at_3
value: 33.643
- type: ndcg_at_5
value: 36.046
- type: precision_at_1
value: 28.874
- type: precision_at_10
value: 7.305000000000001
- type: precision_at_100
value: 1.21
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 16.009
- type: precision_at_5
value: 11.741999999999999
- type: recall_at_1
value: 23.549
- type: recall_at_10
value: 51.15
- type: recall_at_100
value: 76.32900000000001
- type: recall_at_1000
value: 92.167
- type: recall_at_3
value: 36.544
- type: recall_at_5
value: 42.75
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 24.524
- type: map_at_10
value: 34.288999999999994
- type: map_at_100
value: 35.67
- type: map_at_1000
value: 35.788
- type: map_at_3
value: 31.029
- type: map_at_5
value: 32.767
- type: ndcg_at_1
value: 29.794999999999998
- type: ndcg_at_10
value: 40.164
- type: ndcg_at_100
value: 46.278999999999996
- type: ndcg_at_1000
value: 48.698
- type: ndcg_at_3
value: 34.648
- type: ndcg_at_5
value: 36.982
- type: precision_at_1
value: 29.794999999999998
- type: precision_at_10
value: 7.580000000000001
- type: precision_at_100
value: 1.248
- type: precision_at_1000
value: 0.165
- type: precision_at_3
value: 16.628999999999998
- type: precision_at_5
value: 12.055
- type: recall_at_1
value: 24.524
- type: recall_at_10
value: 52.782
- type: recall_at_100
value: 79.108
- type: recall_at_1000
value: 95.62899999999999
- type: recall_at_3
value: 37.330999999999996
- type: recall_at_5
value: 43.502
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 21.669083333333333
- type: map_at_10
value: 30.095166666666668
- type: map_at_100
value: 31.35275
- type: map_at_1000
value: 31.476166666666668
- type: map_at_3
value: 27.41675
- type: map_at_5
value: 28.91216666666667
- type: ndcg_at_1
value: 25.666833333333333
- type: ndcg_at_10
value: 35.23175
- type: ndcg_at_100
value: 40.822833333333335
- type: ndcg_at_1000
value: 43.33783333333334
- type: ndcg_at_3
value: 30.516333333333336
- type: ndcg_at_5
value: 32.723
- type: precision_at_1
value: 25.666833333333333
- type: precision_at_10
value: 6.345583333333332
- type: precision_at_100
value: 1.0886666666666667
- type: precision_at_1000
value: 0.14974999999999997
- type: precision_at_3
value: 14.185583333333335
- type: precision_at_5
value: 10.265333333333334
- type: recall_at_1
value: 21.669083333333333
- type: recall_at_10
value: 46.69591666666667
- type: recall_at_100
value: 71.36999999999999
- type: recall_at_1000
value: 88.98216666666666
- type: recall_at_3
value: 33.59675
- type: recall_at_5
value: 39.2065
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 18.587999999999997
- type: map_at_10
value: 25.452
- type: map_at_100
value: 26.296999999999997
- type: map_at_1000
value: 26.394000000000002
- type: map_at_3
value: 23.474
- type: map_at_5
value: 24.629
- type: ndcg_at_1
value: 21.012
- type: ndcg_at_10
value: 29.369
- type: ndcg_at_100
value: 33.782000000000004
- type: ndcg_at_1000
value: 36.406
- type: ndcg_at_3
value: 25.45
- type: ndcg_at_5
value: 27.384999999999998
- type: precision_at_1
value: 21.012
- type: precision_at_10
value: 4.723999999999999
- type: precision_at_100
value: 0.753
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 11.094
- type: precision_at_5
value: 7.914000000000001
- type: recall_at_1
value: 18.587999999999997
- type: recall_at_10
value: 39.413
- type: recall_at_100
value: 59.78
- type: recall_at_1000
value: 79.49199999999999
- type: recall_at_3
value: 28.485
- type: recall_at_5
value: 33.367999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 12.76
- type: map_at_10
value: 18.859
- type: map_at_100
value: 19.865
- type: map_at_1000
value: 19.994
- type: map_at_3
value: 16.817
- type: map_at_5
value: 17.837
- type: ndcg_at_1
value: 15.415999999999999
- type: ndcg_at_10
value: 23.037
- type: ndcg_at_100
value: 28.164
- type: ndcg_at_1000
value: 31.404
- type: ndcg_at_3
value: 19.134999999999998
- type: ndcg_at_5
value: 20.711
- type: precision_at_1
value: 15.415999999999999
- type: precision_at_10
value: 4.387
- type: precision_at_100
value: 0.826
- type: precision_at_1000
value: 0.127
- type: precision_at_3
value: 9.257
- type: precision_at_5
value: 6.696000000000001
- type: recall_at_1
value: 12.76
- type: recall_at_10
value: 32.657000000000004
- type: recall_at_100
value: 56.023
- type: recall_at_1000
value: 79.572
- type: recall_at_3
value: 21.608
- type: recall_at_5
value: 25.726
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 22.415
- type: map_at_10
value: 29.957
- type: map_at_100
value: 31.234
- type: map_at_1000
value: 31.351000000000003
- type: map_at_3
value: 27.261999999999997
- type: map_at_5
value: 28.708
- type: ndcg_at_1
value: 26.118999999999996
- type: ndcg_at_10
value: 34.961999999999996
- type: ndcg_at_100
value: 40.876000000000005
- type: ndcg_at_1000
value: 43.586000000000006
- type: ndcg_at_3
value: 29.958000000000002
- type: ndcg_at_5
value: 32.228
- type: precision_at_1
value: 26.118999999999996
- type: precision_at_10
value: 6.053999999999999
- type: precision_at_100
value: 1.012
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 13.65
- type: precision_at_5
value: 9.795
- type: recall_at_1
value: 22.415
- type: recall_at_10
value: 46.339000000000006
- type: recall_at_100
value: 72.30799999999999
- type: recall_at_1000
value: 91.448
- type: recall_at_3
value: 32.673
- type: recall_at_5
value: 38.467
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 21.624
- type: map_at_10
value: 30.0
- type: map_at_100
value: 31.776
- type: map_at_1000
value: 32.005
- type: map_at_3
value: 27.314
- type: map_at_5
value: 28.741
- type: ndcg_at_1
value: 25.691999999999997
- type: ndcg_at_10
value: 35.64
- type: ndcg_at_100
value: 42.488
- type: ndcg_at_1000
value: 44.978
- type: ndcg_at_3
value: 31.147000000000002
- type: ndcg_at_5
value: 33.241
- type: precision_at_1
value: 25.691999999999997
- type: precision_at_10
value: 7.0360000000000005
- type: precision_at_100
value: 1.547
- type: precision_at_1000
value: 0.244
- type: precision_at_3
value: 15.02
- type: precision_at_5
value: 11.146
- type: recall_at_1
value: 21.624
- type: recall_at_10
value: 46.415
- type: recall_at_100
value: 77.086
- type: recall_at_1000
value: 92.72500000000001
- type: recall_at_3
value: 33.911
- type: recall_at_5
value: 39.116
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 15.659
- type: map_at_10
value: 22.35
- type: map_at_100
value: 23.498
- type: map_at_1000
value: 23.602
- type: map_at_3
value: 19.959
- type: map_at_5
value: 21.201999999999998
- type: ndcg_at_1
value: 17.375
- type: ndcg_at_10
value: 26.606
- type: ndcg_at_100
value: 32.567
- type: ndcg_at_1000
value: 35.177
- type: ndcg_at_3
value: 21.843
- type: ndcg_at_5
value: 23.924
- type: precision_at_1
value: 17.375
- type: precision_at_10
value: 4.455
- type: precision_at_100
value: 0.8109999999999999
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 9.427000000000001
- type: precision_at_5
value: 6.912999999999999
- type: recall_at_1
value: 15.659
- type: recall_at_10
value: 38.167
- type: recall_at_100
value: 66.11
- type: recall_at_1000
value: 85.529
- type: recall_at_3
value: 25.308000000000003
- type: recall_at_5
value: 30.182
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
metrics:
- type: map_at_1
value: 3.9469999999999996
- type: map_at_10
value: 6.816999999999999
- type: map_at_100
value: 7.7170000000000005
- type: map_at_1000
value: 7.887
- type: map_at_3
value: 5.6739999999999995
- type: map_at_5
value: 6.243
- type: ndcg_at_1
value: 8.73
- type: ndcg_at_10
value: 10.366999999999999
- type: ndcg_at_100
value: 15.343000000000002
- type: ndcg_at_1000
value: 19.535
- type: ndcg_at_3
value: 7.976
- type: ndcg_at_5
value: 8.786
- type: precision_at_1
value: 8.73
- type: precision_at_10
value: 3.3160000000000003
- type: precision_at_100
value: 0.857
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 5.776
- type: precision_at_5
value: 4.534
- type: recall_at_1
value: 3.9469999999999996
- type: recall_at_10
value: 13.385
- type: recall_at_100
value: 31.612000000000002
- type: recall_at_1000
value: 56.252
- type: recall_at_3
value: 7.686
- type: recall_at_5
value: 9.879
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
metrics:
- type: map_at_1
value: 5.75
- type: map_at_10
value: 11.632000000000001
- type: map_at_100
value: 16.400000000000002
- type: map_at_1000
value: 17.580000000000002
- type: map_at_3
value: 8.49
- type: map_at_5
value: 9.626999999999999
- type: ndcg_at_1
value: 35.75
- type: ndcg_at_10
value: 27.766000000000002
- type: ndcg_at_100
value: 31.424000000000003
- type: ndcg_at_1000
value: 38.998
- type: ndcg_at_3
value: 30.807000000000002
- type: ndcg_at_5
value: 28.62
- type: precision_at_1
value: 44.25
- type: precision_at_10
value: 22.625
- type: precision_at_100
value: 7.163
- type: precision_at_1000
value: 1.619
- type: precision_at_3
value: 33.75
- type: precision_at_5
value: 28.199999999999996
- type: recall_at_1
value: 5.75
- type: recall_at_10
value: 16.918
- type: recall_at_100
value: 37.645
- type: recall_at_1000
value: 62.197
- type: recall_at_3
value: 9.721
- type: recall_at_5
value: 11.974
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
metrics:
- type: accuracy
value: 51.355000000000004
- type: f1
value: 44.27505726378252
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
metrics:
- type: map_at_1
value: 13.81
- type: map_at_10
value: 21.567
- type: map_at_100
value: 22.461000000000002
- type: map_at_1000
value: 22.545
- type: map_at_3
value: 19.282
- type: map_at_5
value: 20.535999999999998
- type: ndcg_at_1
value: 15.032
- type: ndcg_at_10
value: 26.165
- type: ndcg_at_100
value: 30.819999999999997
- type: ndcg_at_1000
value: 33.209
- type: ndcg_at_3
value: 21.488
- type: ndcg_at_5
value: 23.721999999999998
- type: precision_at_1
value: 15.032
- type: precision_at_10
value: 4.292
- type: precision_at_100
value: 0.6779999999999999
- type: precision_at_1000
value: 0.09
- type: precision_at_3
value: 9.551
- type: precision_at_5
value: 6.927999999999999
- type: recall_at_1
value: 13.81
- type: recall_at_10
value: 39.009
- type: recall_at_100
value: 60.99400000000001
- type: recall_at_1000
value: 79.703
- type: recall_at_3
value: 26.221
- type: recall_at_5
value: 31.604
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
metrics:
- type: map_at_1
value: 16.55
- type: map_at_10
value: 27.101
- type: map_at_100
value: 28.941
- type: map_at_1000
value: 29.137
- type: map_at_3
value: 22.926
- type: map_at_5
value: 25.217
- type: ndcg_at_1
value: 33.951
- type: ndcg_at_10
value: 34.832
- type: ndcg_at_100
value: 41.989
- type: ndcg_at_1000
value: 45.262
- type: ndcg_at_3
value: 30.427
- type: ndcg_at_5
value: 31.985999999999997
- type: precision_at_1
value: 33.951
- type: precision_at_10
value: 10.139
- type: precision_at_100
value: 1.735
- type: precision_at_1000
value: 0.233
- type: precision_at_3
value: 20.576
- type: precision_at_5
value: 15.556000000000001
- type: recall_at_1
value: 16.55
- type: recall_at_10
value: 42.153
- type: recall_at_100
value: 69.19999999999999
- type: recall_at_1000
value: 88.631
- type: recall_at_3
value: 27.071
- type: recall_at_5
value: 33.432
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
metrics:
- type: map_at_1
value: 18.102999999999998
- type: map_at_10
value: 26.006
- type: map_at_100
value: 27.060000000000002
- type: map_at_1000
value: 27.173000000000002
- type: map_at_3
value: 23.815
- type: map_at_5
value: 24.978
- type: ndcg_at_1
value: 36.205
- type: ndcg_at_10
value: 33.198
- type: ndcg_at_100
value: 37.836999999999996
- type: ndcg_at_1000
value: 40.499
- type: ndcg_at_3
value: 29.108
- type: ndcg_at_5
value: 30.993
- type: precision_at_1
value: 36.205
- type: precision_at_10
value: 7.404
- type: precision_at_100
value: 1.109
- type: precision_at_1000
value: 0.146
- type: precision_at_3
value: 18.479
- type: precision_at_5
value: 12.581000000000001
- type: recall_at_1
value: 18.102999999999998
- type: recall_at_10
value: 37.022
- type: recall_at_100
value: 55.449000000000005
- type: recall_at_1000
value: 73.214
- type: recall_at_3
value: 27.717999999999996
- type: recall_at_5
value: 31.452
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
metrics:
- type: accuracy
value: 77.3372
- type: ap
value: 71.64946791935137
- type: f1
value: 77.13428403424751
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
metrics:
- type: map_at_1
value: 9.093
- type: map_at_10
value: 16.227
- type: map_at_100
value: 17.477999999999998
- type: map_at_1000
value: 17.579
- type: map_at_3
value: 13.541
- type: map_at_5
value: 14.921000000000001
- type: ndcg_at_1
value: 9.370000000000001
- type: ndcg_at_10
value: 20.705000000000002
- type: ndcg_at_100
value: 27.331
- type: ndcg_at_1000
value: 30.104
- type: ndcg_at_3
value: 15.081
- type: ndcg_at_5
value: 17.551
- type: precision_at_1
value: 9.370000000000001
- type: precision_at_10
value: 3.633
- type: precision_at_100
value: 0.7040000000000001
- type: precision_at_1000
value: 0.094
- type: precision_at_3
value: 6.648
- type: precision_at_5
value: 5.241
- type: recall_at_1
value: 9.093
- type: recall_at_10
value: 34.777
- type: recall_at_100
value: 66.673
- type: recall_at_1000
value: 88.44999999999999
- type: recall_at_3
value: 19.194
- type: recall_at_5
value: 25.124999999999996
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 90.3374373005016
- type: f1
value: 90.25497662319412
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 76.98224852071004
- type: f1
value: 75.10443724253962
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (es)
config: es
split: test
metrics:
- type: accuracy
value: 73.60907271514343
- type: f1
value: 73.15530983235772
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (fr)
config: fr
split: test
metrics:
- type: accuracy
value: 75.02975258377701
- type: f1
value: 75.53083321964739
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (hi)
config: hi
split: test
metrics:
- type: accuracy
value: 21.40193617784152
- type: f1
value: 15.465217146460256
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (th)
config: th
split: test
metrics:
- type: accuracy
value: 16.206148282097647
- type: f1
value: 11.580229602870345
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 63.32421340629275
- type: f1
value: 45.42341063027956
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 44.426599041983664
- type: f1
value: 27.205947872504428
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (es)
config: es
split: test
metrics:
- type: accuracy
value: 42.02801867911942
- type: f1
value: 26.314909946795733
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (fr)
config: fr
split: test
metrics:
- type: accuracy
value: 43.845912934544316
- type: f1
value: 29.519701972859792
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (hi)
config: hi
split: test
metrics:
- type: accuracy
value: 3.80064539261384
- type: f1
value: 1.2078686392462628
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (th)
config: th
split: test
metrics:
- type: accuracy
value: 5.207956600361665
- type: f1
value: 1.5365513001536746
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (af)
config: af
split: test
metrics:
- type: accuracy
value: 34.32078009414929
- type: f1
value: 31.969428974847435
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (am)
config: am
split: test
metrics:
- type: accuracy
value: 2.3772696704774714
- type: f1
value: 1.027013290806954
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ar)
config: ar
split: test
metrics:
- type: accuracy
value: 4.53261600537996
- type: f1
value: 2.793131265571347
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (az)
config: az
split: test
metrics:
- type: accuracy
value: 31.758574310692673
- type: f1
value: 30.162299253522708
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (bn)
config: bn
split: test
metrics:
- type: accuracy
value: 2.5823806321452594
- type: f1
value: 1.0918434877949255
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (cy)
config: cy
split: test
metrics:
- type: accuracy
value: 28.94418291862811
- type: f1
value: 27.498874158049468
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (da)
config: da
split: test
metrics:
- type: accuracy
value: 38.81977135171486
- type: f1
value: 36.44688565156101
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 45.22864828513786
- type: f1
value: 41.61460113481098
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (el)
config: el
split: test
metrics:
- type: accuracy
value: 10.053799596503026
- type: f1
value: 5.1615743271775285
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 69.74445191661063
- type: f1
value: 67.00099408297854
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (es)
config: es
split: test
metrics:
- type: accuracy
value: 45.31943510423672
- type: f1
value: 43.92469151179908
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fa)
config: fa
split: test
metrics:
- type: accuracy
value: 3.5810356422326834
- type: f1
value: 0.8057464198110936
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fi)
config: fi
split: test
metrics:
- type: accuracy
value: 33.52387357094821
- type: f1
value: 30.686159550520415
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fr)
config: fr
split: test
metrics:
- type: accuracy
value: 51.13315400134499
- type: f1
value: 48.84533274433444
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (he)
config: he
split: test
metrics:
- type: accuracy
value: 2.632817753866846
- type: f1
value: 0.7565304035292157
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hi)
config: hi
split: test
metrics:
- type: accuracy
value: 2.6798924008069935
- type: f1
value: 1.5577100383199163
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hu)
config: hu
split: test
metrics:
- type: accuracy
value: 32.306657700067255
- type: f1
value: 29.508334412971788
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hy)
config: hy
split: test
metrics:
- type: accuracy
value: 3.3254875588433084
- type: f1
value: 0.9498561670625558
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (id)
config: id
split: test
metrics:
- type: accuracy
value: 35.497646267652996
- type: f1
value: 32.919473578262014
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (is)
config: is
split: test
metrics:
- type: accuracy
value: 29.818426361802285
- type: f1
value: 27.968522255792134
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (it)
config: it
split: test
metrics:
- type: accuracy
value: 45.585070611970416
- type: f1
value: 43.85609178763681
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ja)
config: ja
split: test
metrics:
- type: accuracy
value: 3.6718224613315398
- type: f1
value: 1.5834733153849028
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (jv)
config: jv
split: test
metrics:
- type: accuracy
value: 31.149966375252188
- type: f1
value: 28.77156087445068
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ka)
config: ka
split: test
metrics:
- type: accuracy
value: 2.767316745124411
- type: f1
value: 1.0163373847923576
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (km)
config: km
split: test
metrics:
- type: accuracy
value: 5.655682582380632
- type: f1
value: 1.6046205246119
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (kn)
config: kn
split: test
metrics:
- type: accuracy
value: 2.5924680564895763
- type: f1
value: 1.3338404330308657
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ko)
config: ko
split: test
metrics:
- type: accuracy
value: 2.3436449226630804
- type: f1
value: 0.5935093070394912
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (lv)
config: lv
split: test
metrics:
- type: accuracy
value: 33.97108271687962
- type: f1
value: 33.35695453571926
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ml)
config: ml
split: test
metrics:
- type: accuracy
value: 2.5453934095494284
- type: f1
value: 0.5515796181696971
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (mn)
config: mn
split: test
metrics:
- type: accuracy
value: 14.704102219233356
- type: f1
value: 12.444230806799856
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ms)
config: ms
split: test
metrics:
- type: accuracy
value: 33.12037659717552
- type: f1
value: 29.867258908899636
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (my)
config: my
split: test
metrics:
- type: accuracy
value: 4.421654337592468
- type: f1
value: 1.3125497683444283
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nb)
config: nb
split: test
metrics:
- type: accuracy
value: 38.53059852051109
- type: f1
value: 35.473185172465996
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nl)
config: nl
split: test
metrics:
- type: accuracy
value: 37.96234028244788
- type: f1
value: 34.24786837723274
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
metrics:
- type: accuracy
value: 34.40820443846672
- type: f1
value: 32.06121218840769
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pt)
config: pt
split: test
metrics:
- type: accuracy
value: 43.35238735709483
- type: f1
value: 41.66578945324342
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ro)
config: ro
split: test
metrics:
- type: accuracy
value: 42.68997982515131
- type: f1
value: 40.12799296163562
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ru)
config: ru
split: test
metrics:
- type: accuracy
value: 14.815063887020846
- type: f1
value: 14.113147395663178
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sl)
config: sl
split: test
metrics:
- type: accuracy
value: 34.54270342972428
- type: f1
value: 32.556771565845736
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sq)
config: sq
split: test
metrics:
- type: accuracy
value: 38.54068594485541
- type: f1
value: 34.63112962341627
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sv)
config: sv
split: test
metrics:
- type: accuracy
value: 35.978480161398785
- type: f1
value: 32.896757123025
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sw)
config: sw
split: test
metrics:
- type: accuracy
value: 32.135171486213856
- type: f1
value: 30.338211408536065
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ta)
config: ta
split: test
metrics:
- type: accuracy
value: 1.4055144586415602
- type: f1
value: 0.4241059307791662
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (te)
config: te
split: test
metrics:
- type: accuracy
value: 2.501681237390719
- type: f1
value: 0.9247691466655827
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (th)
config: th
split: test
metrics:
- type: accuracy
value: 3.7088096839273708
- type: f1
value: 1.7117159563540418
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tl)
config: tl
split: test
metrics:
- type: accuracy
value: 36.04236718224613
- type: f1
value: 31.848270154788448
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tr)
config: tr
split: test
metrics:
- type: accuracy
value: 33.765971755211844
- type: f1
value: 31.25189279882076
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ur)
config: ur
split: test
metrics:
- type: accuracy
value: 2.992602555480834
- type: f1
value: 1.6243709826215067
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (vi)
config: vi
split: test
metrics:
- type: accuracy
value: 22.61936785474109
- type: f1
value: 20.616493213131037
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
metrics:
- type: accuracy
value: 1.1163416274377942
- type: f1
value: 0.17708079483587733
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-TW)
config: zh-TW
split: test
metrics:
- type: accuracy
value: 4.6267652992602555
- type: f1
value: 1.8933559386335084
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (af)
config: af
split: test
metrics:
- type: accuracy
value: 44.45191661062542
- type: f1
value: 40.78791900409084
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (am)
config: am
split: test
metrics:
- type: accuracy
value: 7.508406186953598
- type: f1
value: 2.821623266241915
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ar)
config: ar
split: test
metrics:
- type: accuracy
value: 12.323470073974445
- type: f1
value: 7.033060282091267
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (az)
config: az
split: test
metrics:
- type: accuracy
value: 38.40954942837929
- type: f1
value: 35.118197115254915
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (bn)
config: bn
split: test
metrics:
- type: accuracy
value: 8.453261600537996
- type: f1
value: 3.7954675930409887
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (cy)
config: cy
split: test
metrics:
- type: accuracy
value: 35.036987222595826
- type: f1
value: 32.66245000430742
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (da)
config: da
split: test
metrics:
- type: accuracy
value: 48.35911230665769
- type: f1
value: 45.007102253202646
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
metrics:
- type: accuracy
value: 59.11903160726294
- type: f1
value: 56.29359157547811
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (el)
config: el
split: test
metrics:
- type: accuracy
value: 17.679892400806995
- type: f1
value: 12.298039805650598
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
metrics:
- type: accuracy
value: 72.32347007397445
- type: f1
value: 71.44743919882103
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (es)
config: es
split: test
metrics:
- type: accuracy
value: 55.61197041022192
- type: f1
value: 53.34238608745496
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fa)
config: fa
split: test
metrics:
- type: accuracy
value: 6.859448554135844
- type: f1
value: 2.6611096235427603
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fi)
config: fi
split: test
metrics:
- type: accuracy
value: 41.34162743779422
- type: f1
value: 37.16587245902462
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fr)
config: fr
split: test
metrics:
- type: accuracy
value: 59.91930060524545
- type: f1
value: 58.82978451275059
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (he)
config: he
split: test
metrics:
- type: accuracy
value: 7.864828513786147
- type: f1
value: 2.1478868713724184
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hi)
config: hi
split: test
metrics:
- type: accuracy
value: 7.6328177538668465
- type: f1
value: 4.359158983520571
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hu)
config: hu
split: test
metrics:
- type: accuracy
value: 41.31136516476127
- type: f1
value: 37.56187834379295
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hy)
config: hy
split: test
metrics:
- type: accuracy
value: 9.226630800268998
- type: f1
value: 4.272151036150232
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (id)
config: id
split: test
metrics:
- type: accuracy
value: 44.64357767316745
- type: f1
value: 42.836643630228295
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (is)
config: is
split: test
metrics:
- type: accuracy
value: 39.633490248823136
- type: f1
value: 35.97498169100485
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (it)
config: it
split: test
metrics:
- type: accuracy
value: 54.57969065232011
- type: f1
value: 51.96887024053593
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ja)
config: ja
split: test
metrics:
- type: accuracy
value: 4.956287827841291
- type: f1
value: 2.885322950712636
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (jv)
config: jv
split: test
metrics:
- type: accuracy
value: 40.73301950235374
- type: f1
value: 37.77421393601645
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ka)
config: ka
split: test
metrics:
- type: accuracy
value: 7.505043712172157
- type: f1
value: 2.885798319215117
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (km)
config: km
split: test
metrics:
- type: accuracy
value: 8.732347007397442
- type: f1
value: 3.3227736931128002
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (kn)
config: kn
split: test
metrics:
- type: accuracy
value: 7.985877605917954
- type: f1
value: 4.454873367911008
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ko)
config: ko
split: test
metrics:
- type: accuracy
value: 6.028917283120376
- type: f1
value: 2.1947301613241064
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (lv)
config: lv
split: test
metrics:
- type: accuracy
value: 36.415601882985875
- type: f1
value: 34.328528362740194
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ml)
config: ml
split: test
metrics:
- type: accuracy
value: 6.960322797579018
- type: f1
value: 2.5948923502086636
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (mn)
config: mn
split: test
metrics:
- type: accuracy
value: 19.84868863483524
- type: f1
value: 16.571872313821913
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ms)
config: ms
split: test
metrics:
- type: accuracy
value: 43.18090114324143
- type: f1
value: 39.21386548691514
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (my)
config: my
split: test
metrics:
- type: accuracy
value: 9.462004034969738
- type: f1
value: 4.439617481980993
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nb)
config: nb
split: test
metrics:
- type: accuracy
value: 46.60390047074647
- type: f1
value: 42.97761990856311
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nl)
config: nl
split: test
metrics:
- type: accuracy
value: 50.00336247478143
- type: f1
value: 45.623347729802326
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
metrics:
- type: accuracy
value: 42.29993275050437
- type: f1
value: 39.93988660787354
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pt)
config: pt
split: test
metrics:
- type: accuracy
value: 52.23940820443846
- type: f1
value: 50.63740128715899
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ro)
config: ro
split: test
metrics:
- type: accuracy
value: 53.69535978480161
- type: f1
value: 51.48099264354228
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ru)
config: ru
split: test
metrics:
- type: accuracy
value: 20.68594485541358
- type: f1
value: 19.732532357173614
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sl)
config: sl
split: test
metrics:
- type: accuracy
value: 39.788164088769335
- type: f1
value: 37.63884763800779
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sq)
config: sq
split: test
metrics:
- type: accuracy
value: 50.164761264290526
- type: f1
value: 46.40832635120166
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sv)
config: sv
split: test
metrics:
- type: accuracy
value: 46.68796234028245
- type: f1
value: 42.65714705554807
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sw)
config: sw
split: test
metrics:
- type: accuracy
value: 40.480833893745796
- type: f1
value: 37.28728896543833
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ta)
config: ta
split: test
metrics:
- type: accuracy
value: 7.474781439139207
- type: f1
value: 2.114620869965788
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (te)
config: te
split: test
metrics:
- type: accuracy
value: 6.866173503698722
- type: f1
value: 3.0078405064872755
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (th)
config: th
split: test
metrics:
- type: accuracy
value: 8.258238063214526
- type: f1
value: 4.082391072869187
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tl)
config: tl
split: test
metrics:
- type: accuracy
value: 48.93745796906523
- type: f1
value: 46.427786382184266
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tr)
config: tr
split: test
metrics:
- type: accuracy
value: 41.82918628110289
- type: f1
value: 40.642360044818325
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ur)
config: ur
split: test
metrics:
- type: accuracy
value: 9.767989240080698
- type: f1
value: 4.6812848634278925
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (vi)
config: vi
split: test
metrics:
- type: accuracy
value: 30.013449899125753
- type: f1
value: 28.091947569862718
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
metrics:
- type: accuracy
value: 4.169468728984533
- type: f1
value: 0.8211582847545612
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-TW)
config: zh-TW
split: test
metrics:
- type: accuracy
value: 7.908540685944855
- type: f1
value: 3.5358754800289534
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
metrics:
- type: v_measure
value: 33.20164128507875
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
metrics:
- type: v_measure
value: 26.13067187536383
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
metrics:
- type: map
value: 30.196798710053223
- type: mrr
value: 31.098179519159814
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
metrics:
- type: map_at_1
value: 4.7010000000000005
- type: map_at_10
value: 9.756
- type: map_at_100
value: 12.631999999999998
- type: map_at_1000
value: 14.046
- type: map_at_3
value: 7.053
- type: map_at_5
value: 8.244
- type: ndcg_at_1
value: 35.604
- type: ndcg_at_10
value: 28.645
- type: ndcg_at_100
value: 27.431
- type: ndcg_at_1000
value: 36.378
- type: ndcg_at_3
value: 32.533
- type: ndcg_at_5
value: 30.737
- type: precision_at_1
value: 37.771
- type: precision_at_10
value: 21.517
- type: precision_at_100
value: 7.567
- type: precision_at_1000
value: 2.026
- type: precision_at_3
value: 30.753000000000004
- type: precision_at_5
value: 26.811
- type: recall_at_1
value: 4.7010000000000005
- type: recall_at_10
value: 14.302999999999999
- type: recall_at_100
value: 29.304000000000002
- type: recall_at_1000
value: 62.202999999999996
- type: recall_at_3
value: 8.419
- type: recall_at_5
value: 10.656
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
metrics:
- type: map_at_1
value: 17.444000000000003
- type: map_at_10
value: 29.198
- type: map_at_100
value: 30.553
- type: map_at_1000
value: 30.614
- type: map_at_3
value: 24.992
- type: map_at_5
value: 27.322999999999997
- type: ndcg_at_1
value: 19.641000000000002
- type: ndcg_at_10
value: 36.324
- type: ndcg_at_100
value: 42.641
- type: ndcg_at_1000
value: 44.089
- type: ndcg_at_3
value: 28.000000000000004
- type: ndcg_at_5
value: 32.025
- type: precision_at_1
value: 19.641000000000002
- type: precision_at_10
value: 6.6339999999999995
- type: precision_at_100
value: 1.024
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 13.209999999999999
- type: precision_at_5
value: 10.162
- type: recall_at_1
value: 17.444000000000003
- type: recall_at_10
value: 56.230999999999995
- type: recall_at_100
value: 84.61800000000001
- type: recall_at_1000
value: 95.416
- type: recall_at_3
value: 34.245999999999995
- type: recall_at_5
value: 43.617
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
metrics:
- type: map_at_1
value: 67.604
- type: map_at_10
value: 81.364
- type: map_at_100
value: 82.092
- type: map_at_1000
value: 82.112
- type: map_at_3
value: 78.321
- type: map_at_5
value: 80.203
- type: ndcg_at_1
value: 77.92
- type: ndcg_at_10
value: 85.491
- type: ndcg_at_100
value: 87.102
- type: ndcg_at_1000
value: 87.246
- type: ndcg_at_3
value: 82.219
- type: ndcg_at_5
value: 83.991
- type: precision_at_1
value: 77.92
- type: precision_at_10
value: 13.065
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 35.96
- type: precision_at_5
value: 23.785999999999998
- type: recall_at_1
value: 67.604
- type: recall_at_10
value: 93.57
- type: recall_at_100
value: 99.20400000000001
- type: recall_at_1000
value: 99.958
- type: recall_at_3
value: 84.38900000000001
- type: recall_at_5
value: 89.223
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
metrics:
- type: v_measure
value: 52.930534839708464
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
metrics:
- type: v_measure
value: 59.6686566444821
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
metrics:
- type: map_at_1
value: 3.267
- type: map_at_10
value: 8.061
- type: map_at_100
value: 9.66
- type: map_at_1000
value: 9.926
- type: map_at_3
value: 5.733
- type: map_at_5
value: 6.894
- type: ndcg_at_1
value: 16.0
- type: ndcg_at_10
value: 14.155000000000001
- type: ndcg_at_100
value: 20.973
- type: ndcg_at_1000
value: 26.163999999999998
- type: ndcg_at_3
value: 12.994
- type: ndcg_at_5
value: 11.58
- type: precision_at_1
value: 16.0
- type: precision_at_10
value: 7.470000000000001
- type: precision_at_100
value: 1.7389999999999999
- type: precision_at_1000
value: 0.299
- type: precision_at_3
value: 12.167
- type: precision_at_5
value: 10.280000000000001
- type: recall_at_1
value: 3.267
- type: recall_at_10
value: 15.152
- type: recall_at_100
value: 35.248000000000005
- type: recall_at_1000
value: 60.742
- type: recall_at_3
value: 7.4319999999999995
- type: recall_at_5
value: 10.452
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 84.12684378047692
- type: cos_sim_spearman
value: 80.18231249099851
- type: euclidean_pearson
value: 81.10311004134292
- type: euclidean_spearman
value: 80.18231162371262
- type: manhattan_pearson
value: 81.06660654194627
- type: manhattan_spearman
value: 80.15421301055235
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 86.39022108792102
- type: cos_sim_spearman
value: 78.0511871449349
- type: euclidean_pearson
value: 83.55414895785707
- type: euclidean_spearman
value: 78.04999900363751
- type: manhattan_pearson
value: 83.58122709700247
- type: manhattan_spearman
value: 78.09617051485085
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 85.20665643089602
- type: cos_sim_spearman
value: 85.84897342040492
- type: euclidean_pearson
value: 85.07344348481206
- type: euclidean_spearman
value: 85.84897334409469
- type: manhattan_pearson
value: 85.05095172720918
- type: manhattan_spearman
value: 85.82539599484174
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 83.89550144541676
- type: cos_sim_spearman
value: 82.18926664662587
- type: euclidean_pearson
value: 83.2979886572065
- type: euclidean_spearman
value: 82.18927470901535
- type: manhattan_pearson
value: 83.26470031355984
- type: manhattan_spearman
value: 82.18712042624048
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 86.24309164032012
- type: cos_sim_spearman
value: 87.45860981918769
- type: euclidean_pearson
value: 87.04473506428359
- type: euclidean_spearman
value: 87.45861561864089
- type: manhattan_pearson
value: 87.02002615328881
- type: manhattan_spearman
value: 87.43661746711435
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 82.24202172291855
- type: cos_sim_spearman
value: 84.03233567112525
- type: euclidean_pearson
value: 83.5361433714169
- type: euclidean_spearman
value: 84.03233506665642
- type: manhattan_pearson
value: 83.51738829906122
- type: manhattan_spearman
value: 84.02036537979589
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ko-ko)
config: ko-ko
split: test
metrics:
- type: cos_sim_pearson
value: 9.160685666083912
- type: cos_sim_spearman
value: 10.0553422118037
- type: euclidean_pearson
value: 9.589155152132493
- type: euclidean_spearman
value: 10.215143153291868
- type: manhattan_pearson
value: 9.570908402796292
- type: manhattan_spearman
value: 10.214075999964175
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ar-ar)
config: ar-ar
split: test
metrics:
- type: cos_sim_pearson
value: 10.60353259635145
- type: cos_sim_spearman
value: 13.355557088500165
- type: euclidean_pearson
value: 14.636463268109537
- type: euclidean_spearman
value: 14.35296057730866
- type: manhattan_pearson
value: 14.553161459629774
- type: manhattan_spearman
value: 14.267005982719008
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-ar)
config: en-ar
split: test
metrics:
- type: cos_sim_pearson
value: -4.869359628676264
- type: cos_sim_spearman
value: -5.6460908267056835
- type: euclidean_pearson
value: -4.9763689688023245
- type: euclidean_spearman
value: -5.642707032163295
- type: manhattan_pearson
value: -2.1980242988428276
- type: manhattan_spearman
value: -1.854801657544592
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-de)
config: en-de
split: test
metrics:
- type: cos_sim_pearson
value: 66.79239834758799
- type: cos_sim_spearman
value: 67.11298548130333
- type: euclidean_pearson
value: 66.77948456698994
- type: euclidean_spearman
value: 67.11298548130333
- type: manhattan_pearson
value: 66.5459479074496
- type: manhattan_spearman
value: 66.85517071449804
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
metrics:
- type: cos_sim_pearson
value: 89.5692743691406
- type: cos_sim_spearman
value: 89.56885540021487
- type: euclidean_pearson
value: 89.78111903652413
- type: euclidean_spearman
value: 89.56885540021487
- type: manhattan_pearson
value: 89.68974590722112
- type: manhattan_spearman
value: 89.40694757290255
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-tr)
config: en-tr
split: test
metrics:
- type: cos_sim_pearson
value: 2.5434531383947427
- type: cos_sim_spearman
value: -0.015686409614414636
- type: euclidean_pearson
value: 3.3562612023763454
- type: euclidean_spearman
value: -0.015686409614414636
- type: manhattan_pearson
value: 3.06029066490911
- type: manhattan_spearman
value: 0.9087736864115655
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-en)
config: es-en
split: test
metrics:
- type: cos_sim_pearson
value: 48.19554059380143
- type: cos_sim_spearman
value: 47.72387836409936
- type: euclidean_pearson
value: 48.566966490440386
- type: euclidean_spearman
value: 47.72387836409936
- type: manhattan_pearson
value: 48.47970171544757
- type: manhattan_spearman
value: 48.06448477123342
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-es)
config: es-es
split: test
metrics:
- type: cos_sim_pearson
value: 80.72325991736295
- type: cos_sim_spearman
value: 79.94411571627043
- type: euclidean_pearson
value: 81.66909260117279
- type: euclidean_spearman
value: 79.94284742229813
- type: manhattan_pearson
value: 81.78261278000369
- type: manhattan_spearman
value: 80.18524960358721
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (fr-en)
config: fr-en
split: test
metrics:
- type: cos_sim_pearson
value: 57.385906804319916
- type: cos_sim_spearman
value: 56.60927284389835
- type: euclidean_pearson
value: 58.220472472555414
- type: euclidean_spearman
value: 56.60927284389835
- type: manhattan_pearson
value: 57.974972842168704
- type: manhattan_spearman
value: 56.38609220634484
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (it-en)
config: it-en
split: test
metrics:
- type: cos_sim_pearson
value: 33.56148532200449
- type: cos_sim_spearman
value: 30.46169688812801
- type: euclidean_pearson
value: 34.03749511332228
- type: euclidean_spearman
value: 30.46169688812801
- type: manhattan_pearson
value: 33.51842606041771
- type: manhattan_spearman
value: 30.87826743052681
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (nl-en)
config: nl-en
split: test
metrics:
- type: cos_sim_pearson
value: 37.01008110523631
- type: cos_sim_spearman
value: 36.46124293832437
- type: euclidean_pearson
value: 37.860431566730725
- type: euclidean_spearman
value: 36.46124293832437
- type: manhattan_pearson
value: 37.84974555851177
- type: manhattan_spearman
value: 37.026498066678556
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
metrics:
- type: cos_sim_pearson
value: 56.563590445291226
- type: cos_sim_spearman
value: 62.65994888539158
- type: euclidean_pearson
value: 61.43083003163841
- type: euclidean_spearman
value: 62.65994888539158
- type: manhattan_pearson
value: 61.530512036243564
- type: manhattan_spearman
value: 62.65300646176863
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de)
config: de
split: test
metrics:
- type: cos_sim_pearson
value: 28.29024604941182
- type: cos_sim_spearman
value: 42.084625834786046
- type: euclidean_pearson
value: 30.271611311423545
- type: euclidean_spearman
value: 42.084625834786046
- type: manhattan_pearson
value: 30.19034939394144
- type: manhattan_spearman
value: 42.02260224541176
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es)
config: es
split: test
metrics:
- type: cos_sim_pearson
value: 42.79846662914459
- type: cos_sim_spearman
value: 53.8129210907069
- type: euclidean_pearson
value: 48.21779716691527
- type: euclidean_spearman
value: 53.8129210907069
- type: manhattan_pearson
value: 48.35900342355713
- type: manhattan_spearman
value: 53.94896150957018
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
metrics:
- type: cos_sim_pearson
value: 9.818882867657061
- type: cos_sim_spearman
value: 24.41994279795319
- type: euclidean_pearson
value: 4.813919367736767
- type: euclidean_spearman
value: 24.41994279795319
- type: manhattan_pearson
value: 4.602063702670144
- type: manhattan_spearman
value: 24.218951967147824
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (tr)
config: tr
split: test
metrics:
- type: cos_sim_pearson
value: 27.410972788257048
- type: cos_sim_spearman
value: 40.44872572093327
- type: euclidean_pearson
value: 33.742359285090565
- type: euclidean_spearman
value: 40.44872572093327
- type: manhattan_pearson
value: 33.90231904900396
- type: manhattan_spearman
value: 40.19149257794821
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ar)
config: ar
split: test
metrics:
- type: cos_sim_pearson
value: 31.3322380268429
- type: cos_sim_spearman
value: 31.200490449337714
- type: euclidean_pearson
value: 32.130848968646525
- type: euclidean_spearman
value: 31.200490449337714
- type: manhattan_pearson
value: 32.14834980954443
- type: manhattan_spearman
value: 31.427049121627025
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ru)
config: ru
split: test
metrics:
- type: cos_sim_pearson
value: 3.4365537430337683
- type: cos_sim_spearman
value: 12.125486695771288
- type: euclidean_pearson
value: 8.134889656987513
- type: euclidean_spearman
value: 12.125486695771288
- type: manhattan_pearson
value: 8.163310600014055
- type: manhattan_spearman
value: 12.129258700591722
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
metrics:
- type: cos_sim_pearson
value: 27.320332340418773
- type: cos_sim_spearman
value: 32.900042162025
- type: euclidean_pearson
value: 30.195166197236723
- type: euclidean_spearman
value: 32.900041812396196
- type: manhattan_pearson
value: 30.146557575933087
- type: manhattan_spearman
value: 32.96907086076731
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr)
config: fr
split: test
metrics:
- type: cos_sim_pearson
value: 69.2830779511937
- type: cos_sim_spearman
value: 77.68846630995027
- type: euclidean_pearson
value: 73.034747757096
- type: euclidean_spearman
value: 77.68846630995027
- type: manhattan_pearson
value: 73.03548141166142
- type: manhattan_spearman
value: 77.65745427658017
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-en)
config: de-en
split: test
metrics:
- type: cos_sim_pearson
value: 39.71606949409573
- type: cos_sim_spearman
value: 46.8990508231622
- type: euclidean_pearson
value: 46.606091669710025
- type: euclidean_spearman
value: 46.8990508231622
- type: manhattan_pearson
value: 46.39554347396642
- type: manhattan_spearman
value: 46.59771734872816
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-en)
config: es-en
split: test
metrics:
- type: cos_sim_pearson
value: 54.53158773665186
- type: cos_sim_spearman
value: 65.18822674266846
- type: euclidean_pearson
value: 58.19324925326185
- type: euclidean_spearman
value: 65.18822674266846
- type: manhattan_pearson
value: 57.83750769005698
- type: manhattan_spearman
value: 65.02074812497972
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (it)
config: it
split: test
metrics:
- type: cos_sim_pearson
value: 56.77648080772914
- type: cos_sim_spearman
value: 60.64694762935356
- type: euclidean_pearson
value: 58.1456140359783
- type: euclidean_spearman
value: 60.64694762935356
- type: manhattan_pearson
value: 58.03342495626636
- type: manhattan_spearman
value: 60.384166246014914
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl-en)
config: pl-en
split: test
metrics:
- type: cos_sim_pearson
value: 47.2314368564716
- type: cos_sim_spearman
value: 42.96651621279448
- type: euclidean_pearson
value: 47.136522518411184
- type: euclidean_spearman
value: 42.96651621279448
- type: manhattan_pearson
value: 48.71469489220069
- type: manhattan_spearman
value: 44.518895193324646
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh-en)
config: zh-en
split: test
metrics:
- type: cos_sim_pearson
value: 25.589949160802995
- type: cos_sim_spearman
value: 20.153084379882284
- type: euclidean_pearson
value: 26.82363451623337
- type: euclidean_spearman
value: 20.153084379882284
- type: manhattan_pearson
value: 25.843715884495634
- type: manhattan_spearman
value: 18.901328744286676
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-it)
config: es-it
split: test
metrics:
- type: cos_sim_pearson
value: 48.45790617159233
- type: cos_sim_spearman
value: 55.28609467652911
- type: euclidean_pearson
value: 51.88464425822175
- type: euclidean_spearman
value: 55.28609467652911
- type: manhattan_pearson
value: 51.815736921803136
- type: manhattan_spearman
value: 55.33932627352348
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-fr)
config: de-fr
split: test
metrics:
- type: cos_sim_pearson
value: 44.7093430670243
- type: cos_sim_spearman
value: 55.04493953270152
- type: euclidean_pearson
value: 47.90591946944973
- type: euclidean_spearman
value: 55.04493953270152
- type: manhattan_pearson
value: 47.964230618301606
- type: manhattan_spearman
value: 56.09186738739794
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-pl)
config: de-pl
split: test
metrics:
- type: cos_sim_pearson
value: 25.093485946833393
- type: cos_sim_spearman
value: 33.93510205658959
- type: euclidean_pearson
value: 27.454896639869027
- type: euclidean_spearman
value: 33.93510205658959
- type: manhattan_pearson
value: 24.299109196300538
- type: manhattan_spearman
value: 32.51857329560673
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr-pl)
config: fr-pl
split: test
metrics:
- type: cos_sim_pearson
value: 40.9753045484768
- type: cos_sim_spearman
value: 28.17180849095055
- type: euclidean_pearson
value: 40.382800203298906
- type: euclidean_spearman
value: 28.17180849095055
- type: manhattan_pearson
value: 34.084425723423486
- type: manhattan_spearman
value: 28.17180849095055
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 84.76003618726351
- type: cos_sim_spearman
value: 85.52030817522575
- type: euclidean_pearson
value: 85.5039926987335
- type: euclidean_spearman
value: 85.52030817522575
- type: manhattan_pearson
value: 85.51493965359182
- type: manhattan_spearman
value: 85.52189380846832
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
metrics:
- type: map
value: 73.96228332723271
- type: mrr
value: 91.34847813769382
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
metrics:
- type: map_at_1
value: 32.372
- type: map_at_10
value: 41.02
- type: map_at_100
value: 41.907
- type: map_at_1000
value: 41.967
- type: map_at_3
value: 38.244
- type: map_at_5
value: 39.786
- type: ndcg_at_1
value: 34.666999999999994
- type: ndcg_at_10
value: 45.76
- type: ndcg_at_100
value: 50.163999999999994
- type: ndcg_at_1000
value: 51.956
- type: ndcg_at_3
value: 40.687
- type: ndcg_at_5
value: 43.143
- type: precision_at_1
value: 34.666999999999994
- type: precision_at_10
value: 6.7
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 16.667
- type: precision_at_5
value: 11.466999999999999
- type: recall_at_1
value: 32.372
- type: recall_at_10
value: 59.061
- type: recall_at_100
value: 79.733
- type: recall_at_1000
value: 94.167
- type: recall_at_3
value: 45.161
- type: recall_at_5
value: 51.439
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
metrics:
- type: cos_sim_accuracy
value: 99.6960396039604
- type: cos_sim_ap
value: 91.22814257221482
- type: cos_sim_f1
value: 84.43775100401606
- type: cos_sim_precision
value: 84.77822580645162
- type: cos_sim_recall
value: 84.1
- type: dot_accuracy
value: 99.6960396039604
- type: dot_ap
value: 91.22814257221482
- type: dot_f1
value: 84.43775100401606
- type: dot_precision
value: 84.77822580645162
- type: dot_recall
value: 84.1
- type: euclidean_accuracy
value: 99.6960396039604
- type: euclidean_ap
value: 91.22814257221482
- type: euclidean_f1
value: 84.43775100401606
- type: euclidean_precision
value: 84.77822580645162
- type: euclidean_recall
value: 84.1
- type: manhattan_accuracy
value: 99.6960396039604
- type: manhattan_ap
value: 91.18887077921163
- type: manhattan_f1
value: 84.27991886409735
- type: manhattan_precision
value: 85.49382716049382
- type: manhattan_recall
value: 83.1
- type: max_accuracy
value: 99.6960396039604
- type: max_ap
value: 91.22814257221482
- type: max_f1
value: 84.43775100401606
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
metrics:
- type: v_measure
value: 63.13072579524015
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
metrics:
- type: v_measure
value: 35.681141375580225
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
metrics:
- type: map
value: 48.46269194141537
- type: mrr
value: 49.11958343943638
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
metrics:
- type: cos_sim_pearson
value: 30.709572612837498
- type: cos_sim_spearman
value: 31.3940211538976
- type: dot_pearson
value: 30.709578240668765
- type: dot_spearman
value: 31.3940211538976
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
metrics:
- type: map_at_1
value: 0.151
- type: map_at_10
value: 0.822
- type: map_at_100
value: 4.846
- type: map_at_1000
value: 13.117
- type: map_at_3
value: 0.349
- type: map_at_5
value: 0.49500000000000005
- type: ndcg_at_1
value: 48.0
- type: ndcg_at_10
value: 40.699000000000005
- type: ndcg_at_100
value: 35.455
- type: ndcg_at_1000
value: 35.067
- type: ndcg_at_3
value: 44.519999999999996
- type: ndcg_at_5
value: 42.697
- type: precision_at_1
value: 54.0
- type: precision_at_10
value: 44.0
- type: precision_at_100
value: 37.72
- type: precision_at_1000
value: 16.302
- type: precision_at_3
value: 50.0
- type: precision_at_5
value: 47.199999999999996
- type: recall_at_1
value: 0.151
- type: recall_at_10
value: 1.109
- type: recall_at_100
value: 8.644
- type: recall_at_1000
value: 34.566
- type: recall_at_3
value: 0.394
- type: recall_at_5
value: 0.601
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
metrics:
- type: map_at_1
value: 1.786
- type: map_at_10
value: 8.379
- type: map_at_100
value: 13.618
- type: map_at_1000
value: 15.15
- type: map_at_3
value: 3.7900000000000005
- type: map_at_5
value: 6.1530000000000005
- type: ndcg_at_1
value: 19.387999999999998
- type: ndcg_at_10
value: 20.296
- type: ndcg_at_100
value: 31.828
- type: ndcg_at_1000
value: 43.968
- type: ndcg_at_3
value: 19.583000000000002
- type: ndcg_at_5
value: 21.066
- type: precision_at_1
value: 22.448999999999998
- type: precision_at_10
value: 19.592000000000002
- type: precision_at_100
value: 7.041
- type: precision_at_1000
value: 1.49
- type: precision_at_3
value: 22.448999999999998
- type: precision_at_5
value: 24.490000000000002
- type: recall_at_1
value: 1.786
- type: recall_at_10
value: 14.571000000000002
- type: recall_at_100
value: 44.247
- type: recall_at_1000
value: 80.36
- type: recall_at_3
value: 5.117
- type: recall_at_5
value: 9.449
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
metrics:
- type: accuracy
value: 68.19919999999999
- type: ap
value: 14.328836562980976
- type: f1
value: 53.33893474325896
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
metrics:
- type: accuracy
value: 62.71080928126768
- type: f1
value: 62.35221892617029
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
metrics:
- type: v_measure
value: 48.099101871064484
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
metrics:
- type: cos_sim_accuracy
value: 87.60207426834357
- type: cos_sim_ap
value: 78.25096573546108
- type: cos_sim_f1
value: 71.740233384069
- type: cos_sim_precision
value: 69.07669760625306
- type: cos_sim_recall
value: 74.6174142480211
- type: dot_accuracy
value: 87.60207426834357
- type: dot_ap
value: 78.25097910093768
- type: dot_f1
value: 71.740233384069
- type: dot_precision
value: 69.07669760625306
- type: dot_recall
value: 74.6174142480211
- type: euclidean_accuracy
value: 87.60207426834357
- type: euclidean_ap
value: 78.25097099603116
- type: euclidean_f1
value: 71.740233384069
- type: euclidean_precision
value: 69.07669760625306
- type: euclidean_recall
value: 74.6174142480211
- type: manhattan_accuracy
value: 87.61399535077786
- type: manhattan_ap
value: 78.238484943708
- type: manhattan_f1
value: 71.77797490812317
- type: manhattan_precision
value: 69.05632772494513
- type: manhattan_recall
value: 74.72295514511873
- type: max_accuracy
value: 87.61399535077786
- type: max_ap
value: 78.25097910093768
- type: max_f1
value: 71.77797490812317
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
metrics:
- type: cos_sim_accuracy
value: 89.17413746264602
- type: cos_sim_ap
value: 86.04575990028458
- type: cos_sim_f1
value: 78.52034894604814
- type: cos_sim_precision
value: 76.42300123897675
- type: cos_sim_recall
value: 80.73606405913151
- type: dot_accuracy
value: 89.17413746264602
- type: dot_ap
value: 86.04575880500646
- type: dot_f1
value: 78.52034894604814
- type: dot_precision
value: 76.42300123897675
- type: dot_recall
value: 80.73606405913151
- type: euclidean_accuracy
value: 89.17413746264602
- type: euclidean_ap
value: 86.04575106124874
- type: euclidean_f1
value: 78.52034894604814
- type: euclidean_precision
value: 76.42300123897675
- type: euclidean_recall
value: 80.73606405913151
- type: manhattan_accuracy
value: 89.14891139830016
- type: manhattan_ap
value: 86.01748033351211
- type: manhattan_f1
value: 78.48817724818471
- type: manhattan_precision
value: 76.00057690920892
- type: manhattan_recall
value: 81.14413304588851
- type: max_accuracy
value: 89.17413746264602
- type: max_ap
value: 86.04575990028458
- type: max_f1
value: 78.52034894604814
---
# sentence-transformers/sentence-t5-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
This model was converted from the Tensorflow model [st5-base-1](https://tfhub.dev/google/sentence-t5/st5-base/1) to PyTorch. When using this model, have a look at the publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results.
The model uses only the encoder from a T5-base model. The weights are stored in FP16.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/sentence-t5-base')
embeddings = model.encode(sentences)
print(embeddings)
```
The model requires sentence-transformers version 2.2.0 or newer.
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/sentence-t5-base)
## Citing & Authors
If you find this model helpful, please cite the respective publication:
[Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877)