|
--- |
|
language: |
|
- ar |
|
- de |
|
- en |
|
- es |
|
- fr |
|
- it |
|
- ja |
|
- ko |
|
- nl |
|
- pl |
|
- pt |
|
- ru |
|
- th |
|
- tr |
|
- zh |
|
tags: |
|
- bert |
|
- sentence_embedding |
|
- multilingual |
|
- google |
|
- sentence-similarity |
|
- labse |
|
license: apache-2.0 |
|
datasets: |
|
- CommonCrawl |
|
- Wikipedia |
|
--- |
|
|
|
# LaBSE |
|
|
|
## Model description |
|
|
|
Smaller Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model distilled from the [original LaBSE model](https://huggingface.co/setu4993/LaBSE) to 15 languages (from the original 109 languages) using the techniques described in the paper ['Load What You Need: Smaller Versions of Multilingual BERT'](https://arxiv.org/abs/2010.05609) by [Ukjae Jeong](https://github.com/jeongukjae/). |
|
|
|
- Model: [HuggingFace's model hub](https://huggingface.co/setu4993/smaller-LaBSE). |
|
- Original model: [TensorFlow Hub](https://tfhub.dev/jeongukjae/smaller_LaBSE_15lang/1). |
|
- Distillation source: [GitHub](https://github.com/jeongukjae/smaller-labse). |
|
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt). |
|
|
|
## Usage |
|
|
|
Using the model: |
|
|
|
```python |
|
import torch |
|
from transformers import BertModel, BertTokenizerFast |
|
|
|
|
|
tokenizer = BertTokenizerFast.from_pretrained("setu4993/smaller-LaBSE") |
|
model = BertModel.from_pretrained("setu4993/smaller-LaBSE") |
|
model = model.eval() |
|
|
|
english_sentences = [ |
|
"dog", |
|
"Puppies are nice.", |
|
"I enjoy taking long walks along the beach with my dog.", |
|
] |
|
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
english_outputs = model(**english_inputs) |
|
``` |
|
|
|
To get the sentence embeddings, use the pooler output: |
|
|
|
```python |
|
english_embeddings = english_outputs.pooler_output |
|
``` |
|
|
|
Output for other languages: |
|
|
|
```python |
|
italian_sentences = [ |
|
"cane", |
|
"I cuccioli sono carini.", |
|
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.", |
|
] |
|
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"] |
|
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True) |
|
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
italian_outputs = model(**italian_inputs) |
|
japanese_outputs = model(**japanese_inputs) |
|
|
|
italian_embeddings = italian_outputs.pooler_output |
|
japanese_embeddings = japanese_outputs.pooler_output |
|
``` |
|
|
|
For similarity between sentences, an L2-norm is recommended before calculating the similarity: |
|
|
|
```python |
|
import torch.nn.functional as F |
|
|
|
|
|
def similarity(embeddings_1, embeddings_2): |
|
normalized_embeddings_1 = F.normalize(embeddings_1, p=2) |
|
normalized_embeddings_2 = F.normalize(embeddings_2, p=2) |
|
return torch.matmul( |
|
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) |
|
) |
|
|
|
|
|
print(similarity(english_embeddings, italian_embeddings)) |
|
print(similarity(english_embeddings, japanese_embeddings)) |
|
print(similarity(italian_embeddings, japanese_embeddings)) |
|
``` |
|
|
|
## Details |
|
|
|
Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852). |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@misc{feng2020languageagnostic, |
|
title={Language-agnostic BERT Sentence Embedding}, |
|
author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang}, |
|
year={2020}, |
|
eprint={2007.01852}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|