le_signatory / README.md
sguarnaccio's picture
Upload tokenizer
e8f51ea verified
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: nlpaueb/bert-base-uncased-contracts
model-index:
  - name: training
    results: []

training

This model is a fine-tuned version of nlpaueb/bert-base-uncased-contracts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0369
  • Precision: 0.8095
  • Recall: 0.8293
  • F1: 0.8193
  • Accuracy: 0.9881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 11 0.4084 0.0 0.0 0.0 0.8828
No log 2.0 22 0.2084 0.025 0.0122 0.0164 0.9172
No log 3.0 33 0.1223 0.4615 0.3659 0.4082 0.9488
No log 4.0 44 0.1054 0.5417 0.4756 0.5065 0.9572
No log 5.0 55 0.0662 0.6279 0.6585 0.6429 0.9744
No log 6.0 66 0.0758 0.6104 0.5732 0.5912 0.9723
No log 7.0 77 0.0424 0.7619 0.7805 0.7711 0.9842
No log 8.0 88 0.0377 0.7791 0.8171 0.7976 0.9867
No log 9.0 99 0.0419 0.8235 0.8537 0.8383 0.9881
No log 10.0 110 0.0378 0.8214 0.8415 0.8313 0.9874
No log 11.0 121 0.0367 0.8 0.8293 0.8144 0.9874
No log 12.0 132 0.0390 0.8313 0.8415 0.8364 0.9867
No log 13.0 143 0.0365 0.8095 0.8293 0.8193 0.9884
No log 14.0 154 0.0365 0.8214 0.8415 0.8313 0.9884
No log 15.0 165 0.0369 0.8095 0.8293 0.8193 0.9881

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2