shaistaDev7's picture
Add BERTopic model
ceb79e4
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# urdu_topic_modeling
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("shaistaDev7/urdu_topic_modeling")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 5
* Number of training documents: 1008
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| 0 | کینسر - استعمال - جسم - علاج - افراد | 315 | 0_کینسر_استعمال_جسم_علاج |
| 1 | ٹیم - کرکٹ - محمد - میڈل - انگلینڈ | 240 | 1_ٹیم_کرکٹ_محمد_میڈل |
| 2 | روپے - ارب - فیصد - ٹیکس - حکومت | 238 | 2_روپے_ارب_فیصد_ٹیکس |
| 3 | فلم - خان - ووڈ - بالی - اداکارہ | 205 | 3_فلم_خان_ووڈ_بالی |
| 4 | ظفر - میشا - شفیع - علی - جنسی | 10 | 4_ظفر_میشا_شفیع_علی |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: urdu
* low_memory: True
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.23.5
* HDBSCAN: 0.8.33
* UMAP: 0.5.5
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.35.2
* Numba: 0.58.1
* Plotly: 5.15.0
* Python: 3.10.12