shane062's picture
End of training
7489847 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-base-finetuned-500v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 83.78378378378379

whisper-base-finetuned-500v2

This model is a fine-tuned version of openai/whisper-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0286
  • Wer Ortho: 83.7838
  • Wer: 83.7838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0004 33.3333 100 1.0012 81.0811 81.0811
0.0001 66.6667 200 1.0110 78.3784 78.3784
0.0001 100.0 300 1.0186 78.3784 78.3784
0.0 133.3333 400 1.0241 81.0811 81.0811
0.0 166.6667 500 1.0286 83.7838 83.7838

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1