sharukat's picture
Add SetFit model
2e60d79 verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
widget:
  - text: >
      <p><a
      href="https://kwotsin.github.io/tech/2017/02/11/transfer-learning.html"
      rel="nofollow
      noreferrer">https://kwotsin.github.io/tech/2017/02/11/transfer-learning.html</a>

      I followed the above link to make a image classifier</p>


      <p>Training code:</p>


      <pre><code>slim = tf.contrib.slim


      dataset_dir = './data'

      log_dir = './log'

      checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'

      image_size = 299

      num_classes = 21

      vlabels_file = './labels.txt'

      labels = open(labels_file, 'r')

      labels_to_name = {}

      for line in labels:
          label, string_name = line.split(':')
          string_name = string_name[:-1]
          labels_to_name[int(label)] = string_name

      file_pattern = 'test_%s_*.tfrecord'


      items_to_descriptions = {
          'image': 'A 3-channel RGB coloured product image',
          'label': 'A label that from 20 labels'
      }


      num_epochs = 10

      batch_size = 16

      initial_learning_rate = 0.001

      learning_rate_decay_factor = 0.7

      num_epochs_before_decay = 4


      def get_split(split_name, dataset_dir, file_pattern=file_pattern,
      file_pattern_for_counting='products'):
          if split_name not in ['train', 'validation']:
              raise ValueError(
                  'The split_name %s is not recognized. Please input either train or validation as the split_name' % (
                  split_name))

          file_pattern_path = os.path.join(dataset_dir, file_pattern % (split_name))

          num_samples = 0
          file_pattern_for_counting = file_pattern_for_counting + '_' + split_name
          tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir) if
                                file.startswith(file_pattern_for_counting)]
          for tfrecord_file in tfrecords_to_count:
              for record in tf.python_io.tf_record_iterator(tfrecord_file):
                  num_samples += 1

          test = num_samples

          reader = tf.TFRecordReader

          keys_to_features = {
              'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
              'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
              'image/class/label': tf.FixedLenFeature(
                  [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
          }

          items_to_handlers = {
              'image': slim.tfexample_decoder.Image(),
              'label': slim.tfexample_decoder.Tensor('image/class/label'),
          }

          decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)

          labels_to_name_dict = labels_to_name

          dataset = slim.dataset.Dataset(
              data_sources=file_pattern_path,
              decoder=decoder,
              reader=reader,
              num_readers=4,
              num_samples=num_samples,
              num_classes=num_classes,
              labels_to_name=labels_to_name_dict,
              items_to_descriptions=items_to_descriptions)

          return dataset

      def load_batch(dataset, batch_size, height=image_size, width=image_size,
      is_training=True):
          '''
          Loads a batch for training.

          INPUTS:
          - dataset(Dataset): a Dataset class object that is created from the get_split function
          - batch_size(int): determines how big of a batch to train
          - height(int): the height of the image to resize to during preprocessing
          - width(int): the width of the image to resize to during preprocessing
          - is_training(bool): to determine whether to perform a training or evaluation preprocessing

          OUTPUTS:
          - images(Tensor): a Tensor of the shape (batch_size, height, width, channels) that contain one batch of images
          - labels(Tensor): the batch's labels with the shape (batch_size,) (requires one_hot_encoding).

          '''
          # First create the data_provider object
          data_provider = slim.dataset_data_provider.DatasetDataProvider(
              dataset,
              common_queue_capacity=24 + 3 * batch_size,
              common_queue_min=24)

          # Obtain the raw image using the get method
          raw_image, label = data_provider.get(['image', 'label'])

          # Perform the correct preprocessing for this image depending if it is training or evaluating
          image = inception_preprocessing.preprocess_image(raw_image, height, width, is_training)

          # As for the raw images, we just do a simple reshape to batch it up
          raw_image = tf.expand_dims(raw_image, 0)
          raw_image = tf.image.resize_nearest_neighbor(raw_image, [height, width])
          raw_image = tf.squeeze(raw_image)

          # Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
          images, raw_images, labels = tf.train.batch(
              [image, raw_image, label],
              batch_size=batch_size,
              num_threads=4,
              capacity=4 * batch_size,
              allow_smaller_final_batch=True)

          return images, raw_images, labels


      def run():
          # Create the log directory here. Must be done here otherwise import will activate this unneededly.
          if not os.path.exists(log_dir):
              os.mkdir(log_dir)

          # ======================= TRAINING PROCESS =========================
          # Now we start to construct the graph and build our model
          with tf.Graph().as_default() as graph:
              tf.logging.set_verbosity(tf.logging.INFO)  # Set the verbosity to INFO level

              # First create the dataset and load one batch
              dataset = get_split('train', dataset_dir, file_pattern=file_pattern)
              images, _, labels = load_batch(dataset, batch_size=batch_size)

              # Know the number steps to take before decaying the learning rate and batches per epoch
              num_batches_per_epoch = int(dataset.num_samples / batch_size)
              num_steps_per_epoch = num_batches_per_epoch  # Because one step is one batch processed
              decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)

              # Create the model inference
              with slim.arg_scope(inception_resnet_v2_arg_scope()):
                  logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes, is_training=True)

              # Define the scopes that you want to exclude for restoration
              exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
              variables_to_restore = slim.get_variables_to_restore(exclude=exclude)

              # Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
              one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)

              # Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
              loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels, logits=logits)
              total_loss = tf.losses.get_total_loss()  # obtain the regularization losses as well

              # Create the global step for monitoring the learning_rate and training.
              global_step = get_or_create_global_step()

              # Define your exponentially decaying learning rate
              lr = tf.train.exponential_decay(
                  learning_rate=initial_learning_rate,
                  global_step=global_step,
                  decay_steps=decay_steps,
                  decay_rate=learning_rate_decay_factor,
                  staircase=True)

              # Now we can define the optimizer that takes on the learning rate
              optimizer = tf.train.AdamOptimizer(learning_rate=lr)

              # Create the train_op.
              train_op = slim.learning.create_train_op(total_loss, optimizer)

              # State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
              predictions = tf.argmax(end_points['Predictions'], 1)
              probabilities = end_points['Predictions']
              accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, labels)
              metrics_op = tf.group(accuracy_update, probabilities)

              # Now finally create all the summaries you need to monitor and group them into one summary op.
              tf.summary.scalar('losses/Total_Loss', total_loss)
              tf.summary.scalar('accuracy', accuracy)
              tf.summary.scalar('learning_rate', lr)
              my_summary_op = tf.summary.merge_all()

              # Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
              def train_step(sess, train_op, global_step):
                  '''
                  Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
                  '''
                  # Check the time for each sess run
                  start_time = time.time()
                  total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op])
                  time_elapsed = time.time() - start_time

                  # Run the logging to print some results
                  logging.info('global step %s: loss: %.4f (%.2f sec/step)', global_step_count, total_loss, time_elapsed)

                  return total_loss, global_step_count

              # Now we create a saver function that actually restores the variables from a checkpoint file in a sess
              saver = tf.train.Saver(variables_to_restore)

              def restore_fn(sess):
                  return saver.restore(sess, checkpoint_file)

              # Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
              sv = tf.train.Supervisor(logdir=log_dir, summary_op=None, init_fn=restore_fn)

              # Run the managed session
              with sv.managed_session() as sess:
                  for step in xrange(num_steps_per_epoch * num_epochs):
                      # At the start of every epoch, show the vital information:
                      if step % num_batches_per_epoch == 0:
                          logging.info('Epoch %s/%s', step / num_batches_per_epoch + 1, num_epochs)
                          learning_rate_value, accuracy_value = sess.run([lr, accuracy])
                          logging.info('Current Learning Rate: %s', learning_rate_value)
                          logging.info('Current Streaming Accuracy: %s', accuracy_value)

                          # optionally, print your logits and predictions for a sanity check that things are going fine.
                          logits_value, probabilities_value, predictions_value, labels_value = sess.run(
                              [logits, probabilities, predictions, labels])
                          print 'logits: \n', logits_value
                          print 'Probabilities: \n', probabilities_value
                          print 'predictions: \n', predictions_value
                          print 'Labels:\n:', labels_value

                      # Log the summaries every 10 step.
                      if step % 10 == 0:
                          loss, _ = train_step(sess, train_op, sv.global_step)
                          summaries = sess.run(my_summary_op)
                          sv.summary_computed(sess, summaries)

                      # If not, simply run the training step
                      else:
                          loss, _ = train_step(sess, train_op, sv.global_step)

                  # We log the final training loss and accuracy
                  logging.info('Final Loss: %s', loss)
                  logging.info('Final Accuracy: %s', sess.run(accuracy))

                  # Once all the training has been done, save the log files and checkpoint model
                  logging.info('Finished training! Saving model to disk now.')
                  sv.saver.save(sess, sv.save_path, global_step=sv.global_step)
      </code></pre>


      <p>This code seems to work an I have ran training on some sample data and
      Im getting 94% accuracy</p>


      <p>Evaluation code:</p>


      <pre><code>log_dir = './log'

      log_eval = './log_eval_test'

      dataset_dir = './data'

      batch_size = 10

      num_epochs = 1


      checkpoint_file = tf.train.latest_checkpoint('./')



      def run():
          if not os.path.exists(log_eval):
              os.mkdir(log_eval)
          with tf.Graph().as_default() as graph:
              tf.logging.set_verbosity(tf.logging.INFO)
              dataset = get_split('train', dataset_dir)
              images, raw_images, labels = load_batch(dataset, batch_size=batch_size, is_training=False)

              num_batches_per_epoch = dataset.num_samples / batch_size
              num_steps_per_epoch = num_batches_per_epoch

              with slim.arg_scope(inception_resnet_v2_arg_scope()):
                  logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes, is_training=False)

              variables_to_restore = slim.get_variables_to_restore()
              saver = tf.train.Saver(variables_to_restore)

              def restore_fn(sess):
                  return saver.restore(sess, checkpoint_file)

              predictions = tf.argmax(end_points['Predictions'], 1)
              accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, labels)
              metrics_op = tf.group(accuracy_update)

              global_step = get_or_create_global_step()
              global_step_op = tf.assign(global_step, global_step + 1)

              def eval_step(sess, metrics_op, global_step):
                  '''
                  Simply takes in a session, runs the metrics op and some logging information.
                  '''
                  start_time = time.time()
                  _, global_step_count, accuracy_value = sess.run([metrics_op, global_step_op, accuracy])
                  time_elapsed = time.time() - start_time

                  logging.info('Global Step %s: Streaming Accuracy: %.4f (%.2f sec/step)', global_step_count, accuracy_value,
                               time_elapsed)

                  return accuracy_value

              tf.summary.scalar('Validation_Accuracy', accuracy)
              my_summary_op = tf.summary.merge_all()

              sv = tf.train.Supervisor(logdir=log_eval, summary_op=None, saver=None, init_fn=restore_fn)

              with sv.managed_session() as sess:
                  for step in xrange(num_steps_per_epoch * num_epochs):
                      sess.run(sv.global_step)
                      if step % num_batches_per_epoch == 0:
                          logging.info('Epoch: %s/%s', step / num_batches_per_epoch + 1, num_epochs)
                          logging.info('Current Streaming Accuracy: %.4f', sess.run(accuracy))

                      if step % 10 == 0:
                          eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)
                          summaries = sess.run(my_summary_op)
                          sv.summary_computed(sess, summaries)


                      else:
                          eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)

                  logging.info('Final Streaming Accuracy: %.4f', sess.run(accuracy))

                  raw_images, labels, predictions = sess.run([raw_images, labels, predictions])
                  for i in range(10):
                      image, label, prediction = raw_images[i], labels[i], predictions[i]
                      prediction_name, label_name = dataset.labels_to_name[prediction], dataset.labels_to_name[label]
                      text = 'Prediction: %s \n Ground Truth: %s' % (prediction_name, label_name)
                      img_plot = plt.imshow(image)

                      plt.title(text)
                      img_plot.axes.get_yaxis().set_ticks([])
                      img_plot.axes.get_xaxis().set_ticks([])
                      plt.show()

                  logging.info(
                      'Model evaluation has completed! Visit TensorBoard for more information regarding your evaluation.')
      </code></pre>


      <p>So after training the model and getting 94% accuracy i tried to
      evaluate the model. On evaluation I get 0-1% accuracy the whole time. I
      investigated this only to find that it is predicting the same class every
      time</p>


      <pre><code>labels: [7, 11, 5, 1, 20, 0, 18, 1, 0, 7]

      predictions: [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

      </code></pre>


      <p>Can anyone help in where i may be going wrong?</p>


      <p>EDIT:</p>


      <p>TensorBoard accuracy and loss form training</p>


      <p><a href="https://i.stack.imgur.com/NLiwC.png" rel="nofollow
      noreferrer"><img src="https://i.stack.imgur.com/NLiwC.png" alt="enter
      image description here"></a>

      <a href="https://i.stack.imgur.com/QdX6d.png" rel="nofollow
      noreferrer"><img src="https://i.stack.imgur.com/QdX6d.png" alt="enter
      image description here"></a></p>


      <p>TensorBoard accuracy from evaluation</p>


      <p><a href="https://i.stack.imgur.com/TNE5B.png" rel="nofollow
      noreferrer"><img src="https://i.stack.imgur.com/TNE5B.png" alt="enter
      image description here"></a></p>


      <p>EDIT:</p>


      <p>Ive still not been able to solve this issues. I thought there might be
      a problem with how I am restoring the graph in the eval script so I tried
      using this to restore the model instead</p>


      <pre><code>saver = tf.train.import_meta_graph('/log/model.ckpt.meta')


      def restore_fn(sess):
          return saver.restore(sess, checkpoint_file)
      </code></pre>


      <p>instead of</p>


      <pre><code>variables_to_restore = slim.get_variables_to_restore()
          saver = tf.train.Saver(variables_to_restore)

      def restore_fn(sess):
          return saver.restore(sess, checkpoint_file)
      </code></pre>


      <p>and just just takes a very long time to start and finally errors. I
      then tried using V1 of the writer in the saver (<code>saver =
      tf.train.Saver(variables_to_restore,
      write_version=saver_pb2.SaveDef.V1)</code>) and retrained and was unable
      to load this checkpoint at all as it said variables was missing.</p>


      <p>I also attempted to run my eval script with the same data it trained on
      just to see if this may give different results yet I get the same. </p>


      <p>Finally I re-cloned the repo from the url and ran a train using the
      same dataset in the tutorial and I get 0-3% accuracy when I evaluate even
      after getting it to 84% whilst training. Also my checkpoints must have the
      correct information as when I restart training the accuracy continues from
      where it left of. It feels like i'm not doing something correctly when I
      restore the model. Would really appreciate any suggestions on this as im
      at a dead end currently :( </p>
  - text: >
      <p>I've just started using tensorflow for a project I'm working on. The
      program aims to be a binary classifier with input being 12 features. The
      output is either normal patient or patient with a disease. The prevalence
      of the disease is quite low and so my dataset is very imbalanced, with 502
      examples of normal controls and only 38 diseased patients. For this
      reason, I'm trying to use
      <code>tf.nn.weighted_cross_entropy_with_logits</code> as my cost
      function.</p>


      <p>The code is based on the iris custom estimator from the official
      tensorflow documentation, and works with
      <code>tf.losses.sparse_softmax_cross_entropy</code> as the cost function.
      However, when I change to <code>weighted_cross_entropy_with_logits</code>,
      I get a shape error and I'm not sure how to fix this.</p>


      <pre><code>ValueError: logits and targets must have the same shape ((?, 2)
      vs (?,))

      </code></pre>


      <p>I have searched and similar problems have been solved by just reshaping
      the labels - I have tried to do this unsuccessfully (and don't understand
      why <code>tf.losses.sparse_softmax_cross_entropy</code> works fine and the
      weighted version does not). </p>


      <p>My full code is here

      <a
      href="https://gist.github.com/revacious/83142573700c17b8d26a4a1b84b0dff7"
      rel="nofollow
      noreferrer">https://gist.github.com/revacious/83142573700c17b8d26a4a1b84b0dff7</a></p>


      <p>Thanks!</p>
  - text: >
      <p>In the documentation it seems they focus on how to save and restore
      tf.keras.models, but i was wondering how do you save and restore models
      trained customly through some basic iteration loop?</p>


      <p>Now that there isnt a graph or a session, how do we save structure
      defined in a tf function that is customly built without using layer
      abstractions?</p>
  - text: >
      <p>I simply have <code>train = optimizer.minimize(loss =
      tf.constant(4,dtype="float32"))</code> Line of code that i change before
      everything is working. <br/></p>


      <p>Why it is giving error ? Because documentation say it can be tensor <a
      href="https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam#minimize"
      rel="nofollow noreferrer">Here is Docs</a> </p>


      <pre><code>W = tf.Variable([0.5],tf.float32)

      b = tf.Variable([0.1],tf.float32)

      x = tf.placeholder(tf.float32)

      y= tf.placeholder(tf.float32)

      discounted_reward = tf.placeholder(tf.float32,shape=[4,],
      name="discounted_reward")

      linear_model = W*x + b


      squared_delta = tf.square(linear_model - y)

      print(squared_delta)

      loss = tf.reduce_sum(squared_delta*discounted_reward)

      print(loss)

      optimizer = tf.train.GradientDescentOptimizer(0.01)

      train = optimizer.minimize(loss = tf.constant(4,dtype="float32"))

      init = tf.global_variables_initializer()

      sess = tf.Session()


      sess.run(init)


      for i in range(3):
          sess.run(train,{x:[1,2,3,4],y:[0,-1,-2,-3],discounted_reward:[1,2,3,4]})

      print(sess.run([W,b]))

      </code></pre>


      <hr>


      <p>I really need this thing to work. In this particular example we can
      have other ways to solve it but i need it to work as my actual code can do
      this only </p>


      <p><hr/> Error is</p>


      <pre><code>&gt; ValueError: No gradients provided for any variable, check
      your graph

      &gt; for ops that do not support gradients, between variables

      &gt; ["&lt;tf.Variable 'Variable:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_1:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_2:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_3:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_4:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_5:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_6:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_7:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_8:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_9:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_10:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_11:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_12:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_13:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_14:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_15:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_16:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_17:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_18:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_19:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_20:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_21:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_22:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_23:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_24:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_25:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_26:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_27:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_28:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_29:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_30:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_31:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_32:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_33:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_34:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_35:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_36:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_37:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_38:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_39:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_40:0' shape=(1,) dtype=float32_ref&gt;",

      &gt; "&lt;tf.Variable 'Variable_41:0' shape=(1,) dtype=float32_ref&gt;"]
      and loss

      &gt; Tensor("Const_4:0", shape=(), dtype=float32).

      </code></pre>
  - text: >
      <p>I found in the <a href="https://www.tensorflow.org/tutorials/recurrent"
      rel="nofollow noreferrer">tensorflow doc</a>:</p>


      <p><code>

      stacked_lstm = tf.contrib.rnn.MultiRNNCell([lstm] * number_of_layers,
                      ...
      </code></p>


      <p>I need to use MultiRNNCell</p>


      <p>but, I write those lines</p>


      <p><code>

      a = [tf.nn.rnn_cell.BasicLSTMCell(10)]*3

      print id(a[0]), id(a[1])

      </code></p>


      <p>Its output is <code>[4648063696 4648063696]</code>.</p>


      <p>Can <code>MultiRNNCell</code> use the same object
      <code>BasicLSTMCell</code> as a list for parameter?</p>
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.85
            name: Accuracy
          - type: precision
            value: 0.8535353535353536
            name: Precision
          - type: recall
            value: 0.85
            name: Recall
          - type: f1
            value: 0.8496240601503761
            name: F1

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • '

    I'm looking to use Tensorflow to train a neural network model for classification, and I want to read data from a CSV file, such as the Iris data set.

    \n\n

    The Tensorflow documentation shows an example of loading the Iris data and building a prediction model, but the example uses the high-level tf.contrib.learn API. I want to use the low-level Tensorflow API and run gradient descent myself. How would I do that?

    \n'
  • '

    In the following code, I want dense matrix B to left multiply a sparse matrix A, but I got errors.

    \n\n
    import tensorflow as tf\nimport numpy as np\n\nA = tf.sparse_placeholder(tf.float32)\nB = tf.placeholder(tf.float32, shape=(5,5))\nC = tf.matmul(B,A,a_is_sparse=False,b_is_sparse=True)\nsess = tf.InteractiveSession()\nindices = np.array([[3, 2], [1, 2]], dtype=np.int64)\nvalues = np.array([1.0, 2.0], dtype=np.float32)\nshape = np.array([5,5], dtype=np.int64)\nSparse_A = tf.SparseTensorValue(indices, values, shape)\nRandB = np.ones((5, 5))\nprint sess.run(C, feed_dict={A: Sparse_A, B: RandB})\n
    \n\n

    The error message is as follows:

    \n\n
    TypeError: Failed to convert object of type <class 'tensorflow.python.framework.sparse_tensor.SparseTensor'> \nto Tensor. Contents: SparseTensor(indices=Tensor("Placeholder_4:0", shape=(?, ?), dtype=int64), values=Tensor("Placeholder_3:0", shape=(?,), dtype=float32), dense_shape=Tensor("Placeholder_2:0", shape=(?,), dtype=int64)). \nConsider casting elements to a supported type.\n
    \n\n

    What's wrong with my code?

    \n\n

    I'm doing this following the documentation and it says we should use a_is_sparse to denote whether the first matrix is sparse, and similarly with b_is_sparse. Why is my code wrong?

    \n\n

    As is suggested by vijay, I should use C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)

    \n\n

    I tried this but I met with another error saying:

    \n\n
    Caused by op u'SparseToDense', defined at:\n  File "a.py", line 19, in <module>\n    C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)\n  File "/home/fengchao.pfc/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 845, in sparse_tensor_to_dense\n    name=name)\n  File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 710, in sparse_to_dense\n    name=name)\n  File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_sparse_ops.py", line 1094, in _sparse_to_dense\n    validate_indices=validate_indices, name=name)\n  File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op\n    op_def=op_def)\n  File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2506, in create_op\n    original_op=self._default_original_op, op_def=op_def)\n  File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1269, in __init__\n    self._traceback = _extract_stack()\n\nInvalidArgumentError (see above for traceback): indices[1] = [1,2] is out of order\n[[Node: SparseToDense = SparseToDense[T=DT_FLOAT, Tindices=DT_INT64, validate_indices=true, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_Placeholder_4_0_2, _arg_Placeholder_2_0_0, _arg_Placeholder_3_0_1, SparseToDense/default_value)]]\n
    \n\n

    Thank you all for helping me!

    \n'
  • "

    I am using tf.estimator.train_and_evaluate and tf.data.Dataset to feed data to the estimator:

    \n\n

    Input Data function:

    \n\n
        def data_fn(data_dict, batch_size, mode, num_epochs=10):\n        dataset = {}\n        if mode == tf.estimator.ModeKeys.TRAIN:\n            dataset = tf.data.Dataset.from_tensor_slices(data_dict['train_data'].astype(np.float32))\n            dataset = dataset.cache()\n            dataset = dataset.shuffle(buffer_size= batch_size * 10).repeat(num_epochs).batch(batch_size)\n        else:\n            dataset = tf.data.Dataset.from_tensor_slices(data_dict['valid_data'].astype(np.float32))\n            dataset = dataset.cache()\n            dataset = dataset.batch(batch_size)\n\n        iterator = dataset.make_one_shot_iterator()\n        next_element = iterator.get_next()\n\n    return next_element\n
    \n\n

    Train Function:

    \n\n
    def train_model(data):\n    tf.logging.set_verbosity(tf.logging.INFO)\n    config = tf.ConfigProto(allow_soft_placement=True,\n                            log_device_placement=False)\n    config.gpu_options.allow_growth = True\n    run_config = tf.contrib.learn.RunConfig(\n        save_checkpoints_steps=10,\n        keep_checkpoint_max=10,\n        session_config=config\n    )\n\n    train_input = lambda: data_fn(data, 100, tf.estimator.ModeKeys.TRAIN, num_epochs=1)\n    eval_input = lambda: data_fn(data, 1000, tf.estimator.ModeKeys.EVAL)\n    estimator = tf.estimator.Estimator(model_fn=model_fn, params=hps, config=run_config)\n    train_spec = tf.estimator.TrainSpec(train_input, max_steps=100)\n    eval_spec = tf.estimator.EvalSpec(eval_input,\n                                      steps=None,\n                                      throttle_secs = 30)\n\n    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)\n
    \n\n

    The training goes fine, but when it comes to evaluation I get this error:

    \n\n
    OutOfRangeError (see above for traceback): End of sequence \n
    \n\n

    If I don't use Dataset.batch on evaluation dataset (by omitting the line dataset[name] = dataset[name].batch(batch_size) in data_fn) I get the same error but after a much longer time.

    \n\n

    I can only avoid this error if I don't batch the data and use steps=1 for evaluation, but does that perform the evaluation on the whole dataset?

    \n\n

    I don't understand what causes this error as the documentation suggests I should be able to evaluate on batches too.

    \n\n

    Note: I get the same error when using tf.estimator.evaluate on data batches.

    \n"
0
  • '

    I'm working on a project where I have trained a series of binary classifiers with Keras, with Tensorflow as the backend engine. The input data I have is a series of images, where each binary classifier must make the prediction on the images, later I save the predictions on a CSV file.

    \n

    The problem I have is when I get the predictions from the first series of binary classifiers there isn't any warning, but when the 5th or 6th binary classifier calls the method predict on the input data I get the following warning:

    \n
    \n

    WARNING:tensorflow:5 out of the last 5 calls to <function\nModel.make_predict_function..predict_function at\n0x2b280ff5c158> triggered tf.function retracing. Tracing is expensive\nand the excessive number of tracings could be due to (1) creating\[email protected] repeatedly in a loop, (2) passing tensors with different\nshapes, (3) passing Python objects instead of tensors. For (1), please\ndefine your @tf.function outside of the loop. For (2), @tf.function\nhas experimental_relax_shapes=True option that relaxes argument shapes\nthat can avoid unnecessary retracing. For (3), please refer to\nhttps://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args\nand https://www.tensorflow.org/api_docs/python/tf/function for more\ndetails.

    \n
    \n

    To answer each point in the parenthesis, here are my answers:

    \n
      \n
    1. The predict method is called inside a for loop.
    2. \n
    3. I don't pass tensors but a list of NumPy arrays of gray scale images, all of them with the same size in width and height. The only thing that can change is the batch size because the list can have only 1 image or more than one.
    4. \n
    5. As I wrote in point 2, I pass a list of NumPy arrays.
    6. \n
    \n

    I have debugged my program and found that this warning always happens when the method predict is called. To summarize the code I have written is the following:

    \n
    import cv2 as cv\nimport tensorflow as tf\nfrom tensorflow.keras.models import load_model\n# Load the models\nbinary_classifiers = [load_model(path) for path in path2models]\n# Get the images\nimages = [#Load the images with OpenCV]\n# Apply the resizing and reshapes on the images.\nmy_list = list()\nfor image in images:\n    image_reworked = # Apply the resizing and reshaping on images\n    my_list.append(image_reworked)\n\n# Get the prediction from each model\n# This is where I get the warning\npredictions = [model.predict(x=my_list,verbose=0) for model in binary_classifiers]\n
    \n

    What I have tried

    \n

    I have defined a function as tf.function and putted the code of the predictions inside the tf.function like this

    \n
    @tf.function\ndef testing(models, faces):\n    return [model.predict(x=faces,verbose=0) for model in models]\n
    \n

    But I ended up getting the following error:

    \n
    \n

    RuntimeError: Detected a call to Model.predict inside a\ntf.function. Model.predict is a high-level endpoint that manages\nits own tf.function. Please move the call to Model.predict outside\nof all enclosing tf.functions. Note that you can call a Model\ndirectly on Tensors inside a tf.function like: model(x).

    \n
    \n

    So calling the method predict is basically already a tf.function. So it's useless to define a tf.function when the warning I get it's from that method.

    \n

    I have also checked those other two questions:

    \n
      \n
    1. Tensorflow 2: Getting "WARNING:tensorflow:9 out of the last 9 calls to triggered tf.function retracing. Tracing is expensive"
    2. \n
    3. Loading multiple saved tensorflow/keras models for prediction
    4. \n
    \n

    But neither of the two questions answers my question about how to avoid this warning. Plus I have also checked the links in the warning message but I couldn't solve my problem.

    \n

    What I want

    \n

    I simply want to avoid this warning. While I'm still getting the predictions from the models I noticed that the python program takes way too much time on doing predictions for a list of images.

    \n

    What I'm using

    \n
      \n
    • Python 3.6.13
    • \n
    • Tensorflow 2.3.0
    • \n
    \n

    Solution

    \n

    After some tries to suppress the warning from the predict method, I have checked the documentation of Tensorflow and in one of the first tutorials on how to use Tensorflow it is explained that, by default, Tensorflow is executed in eager mode, which is useful for testing and debugging the network models. Since I have already tested my models many times, it was only required to disable the eager mode by writing this single python line of code:

    \n

    tf.compat.v1.disable_eager_execution()

    \n

    Now the warning doesn't show up anymore.

    \n'
  • '

    I try to export a Tensorflow model but I can not find the best way to add the exogenous feature to the tf.contrib.timeseries.StructuralEnsembleRegressor.build_raw_serving_input_receiver_fn.

    \n\n

    I use the sample from the Tensorflow contrib: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/timeseries/examples/known_anomaly.py and I just try to save the model.

    \n\n
    # this is the exogenous column \nstring_feature = tf.contrib.layers.sparse_column_with_keys(\n      column_name="is_changepoint", keys=["no", "yes"])\n\none_hot_feature = tf.contrib.layers.one_hot_column(\n      sparse_id_column=string_feature)\n\nestimator = tf.contrib.timeseries.StructuralEnsembleRegressor(\n      periodicities=12,    \n      cycle_num_latent_values=3,\n      num_features=1,\n      exogenous_feature_columns=[one_hot_feature],\n      exogenous_update_condition=\n      lambda times, features: tf.equal(features["is_changepoint"], "yes"))\n\nreader = tf.contrib.timeseries.CSVReader(\n      csv_file_name,\n\n      column_names=(tf.contrib.timeseries.TrainEvalFeatures.TIMES,\n                    tf.contrib.timeseries.TrainEvalFeatures.VALUES,\n                    "is_changepoint"),\n\n      column_dtypes=(tf.int64, tf.float32, tf.string),\n\n      skip_header_lines=1)\n\ntrain_input_fn = tf.contrib.timeseries.RandomWindowInputFn(reader, batch_size=4, window_size=64)\nestimator.train(input_fn=train_input_fn, steps=train_steps)\nevaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader)\nevaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1)\n\nexport_directory = tempfile.mkdtemp()\n\n###################################################### \n# the exogenous column must be provided to the build_raw_serving_input_receiver_fn. \n# But How ?\n######################################################\n\ninput_receiver_fn = estimator.build_raw_serving_input_receiver_fn()\n# -> error missing 'is_changepoint' key    \n\n#input_receiver_fn = estimator.build_raw_serving_input_receiver_fn({'is_changepoint' : string_feature}) \n# -> cast exception\n\nexport_location = estimator.export_savedmodel(export_directory, input_receiver_fn)\n
    \n\n

    According to the documentation, build_raw_serving_input_receiver_fn exogenous_features parameter : A dictionary mapping feature keys to exogenous features (either Numpy arrays or Tensors). Used to determine the shapes of placeholders for these features.

    \n\n

    So what is the best way to transform the one_hot_column or sparse_column_with_keys to a Tensor object ?

    \n'
  • "

    I am currently working on an optical flow project and I come across a strange error.

    \n\n

    I have uint16 images stored in bytes in my TFrecords. When I read the TFrecords from my local machine it is giving me uint16 values, but when I deploy the same code and read it from the docker I am getting uint8 values eventhough my dtype is uint16. I mean the uint16 values are getting reduced to uint8 like 32768 --> 128.

    \n\n

    What is causing this error?

    \n\n

    My local machine has: Tensorflow 1.10.1 and python 3.6\nMy Docker Image has: Tensorflow 1.12.0 and python 3.5

    \n\n

    I am working on tensorflow object detection API\nWhile creating the TF records I use:

    \n\n
    with tf.gfile.GFile(flows, 'rb') as fid:\n    flow_images = fid.read()\n
    \n\n

    While reading it back I am using: tf.image.decoderaw

    \n\n

    Dataset: KITTI FLOW 2015

    \n"

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.85 0.8535 0.85 0.8496

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("sharukat/sbert-questionclassifier")
# Run inference
preds = model("<p>In the documentation it seems they focus on how to save and restore tf.keras.models, but i was wondering how do you save and restore models trained customly through some basic iteration loop?</p>

<p>Now that there isnt a graph or a session, how do we save structure defined in a tf function that is customly built without using layer abstractions?</p>
")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 15 330.0667 3755
Label Training Sample Count
0 450
1 450

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: unique
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • max_length: 256
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.2951 -
1.0 25341 0.0 0.2473
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 2.5.0
  • Transformers: 4.38.1
  • PyTorch: 2.1.2
  • Datasets: 2.17.1
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}