|
--- |
|
language: |
|
- hi |
|
pipeline_tag: text-generation |
|
tags: |
|
- hindi |
|
- quantization |
|
- shuvom/yuj-v1 |
|
license: apache-2.0 |
|
quantized_by: shuvom |
|
--- |
|
# yuj-v1-GGUF |
|
- Model creator: [shuvom_](https://huggingface.co/shuvom) |
|
- Original model: [shuvom/yuj-v1](https://huggingface.co/shuvom/yuj-v1) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains GGUF format model files for [shuvom/yuj-v1](https://huggingface.co/shuvom/yuj-v1). |
|
|
|
|
|
<!-- description end --> |
|
<!-- README_GGUF.md-about-gguf start --> |
|
### About GGUF |
|
|
|
GGUF and GGML are file formats used for storing models for inference, especially in the context of language models like GPT (Generative Pre-trained Transformer). It allows you to inference in consumer-grade GPUs and CPUs. |
|
|
|
[more info.](https://github.com/ggerganov/llama.cpp) |
|
|
|
## Provided files |
|
|
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| [yuj-v1.Q4_K_M.gguf](https://huggingface.co/shuvom/yuj-v1-GGUF/blob/main/yuj-v1.Q4_K_M.gguf) | Q4_K_M | 4 | 4.17 GB| 6.87 GB | medium, balanced quality - recommended | |
|
|
|
## Usage |
|
|
|
1. Installing lamma.cpp python client and HuggingFace-hub |
|
```python |
|
!pip install llama-cpp-python huggingface-hub |
|
``` |
|
2. Downloading GGUF formatted model |
|
```python |
|
!huggingface-cli download shuvom/yuj-v1-GGUF yuj-v1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False |
|
``` |
|
3. Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. |
|
```python |
|
from llama_cpp import Llama |
|
|
|
llm = Llama( |
|
model_path="./yuj-v1.Q4_K_M.gguf", # Download the model file first |
|
n_ctx=2048, # The max sequence length to use - note that longer sequence lengths require much more resources |
|
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance |
|
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available |
|
) |
|
``` |
|
4. Chat Completion API |
|
```python |
|
llm = Llama(model_path="/content/yuj-v1.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using |
|
llm.create_chat_completion( |
|
messages = [ |
|
{"role": "system", "content": "You are a story writing assistant."}, |
|
{ |
|
"role": "user", |
|
"content": "युज शीर्ष द्विभाषी मॉडल में से एक है" |
|
} |
|
] |
|
) |
|
``` |
|
|