|
--- |
|
language: |
|
- myv |
|
- ru |
|
- fi |
|
- de |
|
- es |
|
- en |
|
- hi |
|
- zh |
|
- tr |
|
- uk |
|
- fr |
|
- ar |
|
tags: |
|
- erzya |
|
- mordovian |
|
- fill-mask |
|
- pretraining |
|
- embeddings |
|
- masked-lm |
|
- feature-extraction |
|
- sentence-similarity |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- slone/myv_ru_2022 |
|
- yhavinga/ccmatrix |
|
--- |
|
|
|
This a model to translate texts from the Erzya language (`myv`, cyrillic script) to 11 other languages: `ru,fi,de,es,en,hi,zh,tr,uk,fr,ar`. |
|
|
|
It is described in the paper "The first neural machine translation system for the Erzya language". |
|
|
|
This model is based on [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) ([license here](https://tfhub.dev/google/LaBSE/2)), but with updated vocabulary and checkpoint: |
|
- Added an extra language token `myv_XX` and 19K new BPE tokens for the Erzya language; |
|
- Fine-tuned to translate to Erzya: first from Russian, then from all 11 languages. |
|
|
|
The following code can be used to run translation using the model |
|
|
|
```Python |
|
from transformers import MBartForConditionalGeneration, MBart50Tokenizer |
|
|
|
|
|
def fix_tokenizer(tokenizer): |
|
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ |
|
old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder) |
|
tokenizer.lang_code_to_id['myv_XX'] = old_len-1 |
|
tokenizer.id_to_lang_code[old_len-1] = 'myv_XX' |
|
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset |
|
|
|
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) |
|
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} |
|
if 'myv_XX' not in tokenizer._additional_special_tokens: |
|
tokenizer._additional_special_tokens.append('myv_XX') |
|
tokenizer.added_tokens_encoder = {} |
|
|
|
|
|
def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs): |
|
tokenizer.src_lang = src |
|
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024) |
|
if max_length == 'auto': |
|
max_length = int(32 + 1.5 * encoded.input_ids.shape[1]) |
|
if train_mode: |
|
model.train() |
|
else: |
|
model.eval() |
|
generated_tokens = model.generate( |
|
**encoded.to(model.device), |
|
forced_bos_token_id=tokenizer.lang_code_to_id[trg], |
|
max_length=max_length, |
|
num_beams=num_beams, |
|
repetition_penalty=repetition_penalty, |
|
num_return_sequences=n_out or 1, |
|
**kwargs |
|
) |
|
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
if isinstance(text, str) and n_out is None: |
|
return out[0] |
|
return out |
|
|
|
|
|
mname = 'slone/mbart-large-51-mul-myv-v1' |
|
model = MBartForConditionalGeneration.from_pretrained(mname) |
|
tokenizer = MBart50Tokenizer.from_pretrained(mname) |
|
fix_tokenizer(tokenizer) |
|
|
|
|
|
print(translate('Привет, собака!', model, tokenizer, src='ru_RU', trg='myv_XX')) |
|
# Шумбрат, киска! # действительно, по-эрзянски собака именно так |
|
print(translate('Hello, doggy!', model, tokenizer, src='en_XX', trg='myv_XX')) |
|
# Шумбрат, киска! |
|
``` |