|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
language: |
|
- es |
|
datasets: |
|
- hackathon-pln-es/nli-es |
|
widget: |
|
- text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos." |
|
- text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario." |
|
- text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos." |
|
- text: "Queda descartada la huelga aunque no cobremos lo que queramos." |
|
--- |
|
|
|
# bertin-roberta-base-finetuning-esnli |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained on a |
|
collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf). |
|
<!--- Describe your model here --> |
|
|
|
You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin). |
|
|
|
You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin). |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Este es un ejemplo", "Cada oración es transformada"] |
|
|
|
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') |
|
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure |
|
|
|
| | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement | |
|
|-------------------:|---------:|-----------:|---------------------:| |
|
| cosine_pearson | 0.609803 | 0.683188 | +12.03 | |
|
| cosine_spearman | 0.528776 | 0.615916 | +16.48 | |
|
| euclidean_pearson | 0.590613 | 0.672601 | +13.88 | |
|
| euclidean_spearman | 0.526529 | 0.611539 | +16.15 | |
|
| manhattan_pearson | 0.589108 | 0.672040 | +14.08 | |
|
| manhattan_spearman | 0.525910 | 0.610517 | +16.09 | |
|
| dot_pearson | 0.544078 | 0.600517 | +10.37 | |
|
| dot_spearman | 0.460427 | 0.521260 | +13.21 | |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**Dataset** |
|
|
|
We used a collection of datasets of Natural Language Inference as training data: |
|
- [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish |
|
- [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated |
|
- [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated |
|
|
|
The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es). |
|
|
|
Here we leave the trick we used to increase the amount of data for training here: |
|
``` |
|
for row in reader: |
|
if row['language'] == 'es': |
|
|
|
sent1 = row['sentence1'].strip() |
|
sent2 = row['sentence2'].strip() |
|
|
|
add_to_samples(sent1, sent2, row['gold_label']) |
|
add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite |
|
``` |
|
|
|
**DataLoader**: |
|
|
|
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` |
|
of length 1818 with parameters: |
|
``` |
|
{'batch_size': 64} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 0, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 909, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Authors |
|
|
|
[Anibal Pérez](https://huggingface.co/Anarpego), |
|
|
|
[Emilio Tomás Ariza](https://huggingface.co/medardodt), |
|
|
|
[Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y |
|
|
|
[Mauricio Mazuecos](https://huggingface.co/mmazuecos). |
|
|
|
|