sonqwe's picture
Upload tokenizer
5fc585e verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-vi-colab
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: vi
          split: test
          args: vi
        metrics:
          - type: wer
            value: 0.5489199491740788
            name: Wer

wav2vec2-large-xls-r-300m-vi-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2851
  • Wer: 0.5489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.7334 4.3478 400 3.3851 1.0
1.5013 8.6957 800 1.4628 0.7461
0.3327 13.0435 1200 1.2413 0.6389
0.1772 17.3913 1600 1.2941 0.5988
0.1231 21.7391 2000 1.2715 0.5654
0.0891 26.0870 2400 1.2851 0.5489

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3