Spaces:
Sleeping
Sleeping
File size: 10,369 Bytes
601068b 0d33bd0 601068b 9330e67 de076a1 601068b db7c755 601068b c4e208d 601068b 0d33bd0 7209b2b 601068b 0d33bd0 601068b db7c755 601068b db7c755 601068b db7c755 601068b db7c755 601068b db7c755 601068b 8d19277 601068b de076a1 db7c755 de076a1 a07c86f de076a1 4909156 f3b88a9 de076a1 f3b88a9 de076a1 f9dbf06 9330e67 de076a1 f9dbf06 8d19277 4f91b89 de076a1 f9dbf06 4f91b89 f9dbf06 1b68bd5 4f91b89 f9dbf06 6d8e979 f9dbf06 6d8e979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.datasets import mnist
import cv2
from PIL import Image
# I/O image dimensions for display
DIMS = (100, 100)
# Load the trained model
mnist_model = load_model('mnist_model.h5')
adv_model = load_model('adv_model.h5')
# Load MNIST examples
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Select one example for each digit 0-9
mnist_examples = []
for digit in range(10):
idx = np.where(y_test == digit)[0][0]
mnist_examples.append([x_test[idx]])
# Function to preprocess the image
def preprocess_image(image):
if isinstance(image, Image.Image):
image = np.array(image.convert('L')) # Convert to grayscale
image = cv2.resize(image, (28, 28)) # Resize to 28x28 for model input
image = image / 255.0
image = image.reshape(1, 28, 28, 1)
return image
# Function to make predictions
def predict(image):
image = preprocess_image(image)
prediction = mnist_model.predict(image)
predicted_label = np.argmax(prediction)
return predicted_label, np.max(prediction)
# Function to compute gradients
def get_gradients(image, label):
image = tf.convert_to_tensor(image.reshape((1, 28, 28, 1)), dtype=tf.float32)
with tf.GradientTape() as tape:
tape.watch(image)
prediction = mnist_model(image)
loss = tf.keras.losses.categorical_crossentropy([label], prediction)
gradients = tape.gradient(loss, image)
return gradients.numpy().reshape(28, 28)
# Function to progressively mask image and observe changes
def progressively_mask_image(image, steps=100, increment=5):
image = preprocess_image(image).reshape(28, 28)
label = np.argmax(mnist_model.predict(image.reshape(1, 28, 28, 1)))
gradients = get_gradients(image, to_categorical(label, 10))
modified_image = np.copy(image)
original_prediction = mnist_model.predict(image.reshape(1, 28, 28, 1))
original_label = np.argmax(original_prediction)
for i in range(1, steps + 1):
threshold = np.percentile(np.abs(gradients), 100 - i * increment)
mask = np.abs(gradients) > threshold
modified_image[mask] = 0
modified_prediction = mnist_model.predict(modified_image.reshape(1, 28, 28, 1))
predicted_label = np.argmax(modified_prediction)
if predicted_label != original_label:
break
return cv2.resize(modified_image, DIMS), original_label, predicted_label
# Gradio interface functions
def gradio_predict(image):
predicted_label, confidence = predict(image)
return f"Predicted Label: {predicted_label}, Confidence: {confidence:.4f}"
def gradio_mask(image, steps, increment=1):
modified_image, original_label, predicted_label = progressively_mask_image(image, steps, increment)
return modified_image, f"Original Label: {original_label}, New Label: {predicted_label}"
# FGSM attack function
def fgsm_attack(image, epsilon, data_grad):
sign_of_grad = tf.sign(data_grad)
perturbed_image = image + epsilon * sign_of_grad
perturbed_image = tf.clip_by_value(perturbed_image, 0, 1)
return perturbed_image
# Create adversarial example function
def create_adversarial_pattern(input_image, input_label):
with tf.GradientTape() as tape:
tape.watch(input_image)
prediction = adv_model(input_image)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(input_label, prediction)
gradient = tape.gradient(loss, input_image)
return gradient
# Generate adversarial examples
epsilon = 0.20 # Tweak epsilon to change the intensity of perturbation
adversarial_examples = []
for i in range(10):
img = preprocess_image(mnist_examples[i][0])
img = tf.convert_to_tensor(img, dtype=tf.float32)
label = tf.reshape(tf.convert_to_tensor([i]), [1, 1])
perturbations = create_adversarial_pattern(img, label)
adv_x = fgsm_attack(img, epsilon, perturbations)
adversarial_examples.append([cv2.resize(adv_x.numpy().squeeze(), DIMS)])
# Resize the examples to 100 by 100
mnist_examples = [[cv2.resize(example[0], DIMS)] for example in mnist_examples]
class GradioInterface:
def __init__(self):
self.preloaded_examples = mnist_examples
self.adversarial_examples = adversarial_examples
def create_interface(self):
app_styles = """
<style>
/* Global Styles */
body, #root {
font-family: Helvetica, Arial, sans-serif;
background-color: #1a1a1a;
color: #fafafa;
}
/* Header Styles */
.app-header {
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
padding: 24px;
border-radius: 8px;
margin-bottom: 24px;
text-align: center;
}
.app-title {
font-size: 48px;
margin: 0;
color: #fafafa;
}
.app-subtitle {
font-size: 24px;
margin: 8px 0 16px;
color: #fafafa;
}
.app-description {
font-size: 16px;
line-height: 1.6;
opacity: 0.8;
margin-bottom: 24px;
}
/* Button Styles */
.publication-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 16px;
}
.publication-link {
display: inline-flex;
align-items: center;
padding: 8px 16px;
background-color: #333;
color: #fff !important;
text-decoration: none !important;
border-radius: 20px;
font-size: 14px;
transition: background-color 0.3s;
}
.publication-link:hover {
background-color: #555;
}
.publication-link i {
margin-right: 8px;
}
/* Content Styles */
.content-container {
background-color: #2a2a2a;
border-radius: 8px;
padding: 24px;
margin-bottom: 24px;
}
/* Image Styles */
.image-preview img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 4px;
display: block;
object-fit: contain;
}
/* Control Styles */
.control-panel {
background-color: #333;
padding: 16px;
border-radius: 8px;
margin-top: 16px;
}
/* Gradio Component Overrides */
.gr-button {
background-color: #4a4a4a;
color: #fff;
border: none;
border-radius: 4px;
padding: 8px 16px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #5a5a5a;
}
.gr-input, .gr-dropdown {
background-color: #3a3a3a;
color: #fff;
border: 1px solid #4a4a4a;
border-radius: 4px;
padding: 8px;
}
.gr-form {
background-color: transparent;
}
.gr-panel {
border: none;
background-color: transparent;
}
/* Override any conflicting styles from Bulma */
.button.is-normal.is-rounded.is-dark {
color: #fff !important;
text-decoration: none !important;
}
</style>
"""
header_html = f"""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
{app_styles}
<div class="app-header">
<h1 class="app-title">Attribution Based Confidence Metric for Neural Networks</h1>
<h2 class="app-subtitle">Steven Fernandes, Ph.D.</h2>
</div>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
gr.HTML(header_html)
with gr.Row(elem_classes="content-container"):
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
steps_input = gr.Slider(minimum=1, maximum=100, label="Attributions Drop Percentage", step=1, value=5)
examples = gr.Examples(
examples=self.preloaded_examples,
inputs=input_image,
label="MNIST Examples"
)
adv_examples = gr.Examples(
examples=self.adversarial_examples,
inputs=input_image,
label="Adversarial Examples"
)
with gr.Column():
result = gr.Image(label="Result", elem_classes="image-preview")
prediction_details = gr.Textbox(label="Prediction Details")
run_button = gr.Button("Run", elem_classes="gr-button")
run_button.click(
fn=gradio_mask,
inputs=[input_image, steps_input],
outputs=[result, prediction_details],
)
return demo
def main():
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(debug=True)
if __name__ == "__main__":
main() |